5. Fluids and plasmas. The Big picture

Both fluid dynamics and plasma dynamics are important for astroplysics. Let us discuss why, and the relation between the two.

- Examples of Fluids: a river, car exhaust, airf these fluids are composed of neutral particles. The bull dynamics are modeled by equations that treat these systems as continuous media without having to worry about dynamics f indindual particles. We will be more priciest about this later.
- If we heat a fluid to high enough temperature, the neutral particles ionize. Even it the net inarge of the systio: is zero the fluid particles themselves are charged. Depending on the ammon. of hortation we mote a partially 10 mized platte or telly ionized pleased"
- Fluid Books often tows ow bulk properties of flows withat consinerig individual particles. This is appropriate when the inverse of the collision frequency $=\left(W_{L}^{-1}\right)$ is shot compact to the time scale of evolution $t_{\text {says }}$. of the multi-partile system under study.
- Similar for o highly united plasmon: when (collision trequaig) $)^{-1}=w_{6}^{-1} t_{\text {bulk }} \ll 1$ the plasma lan be treated as a "fled". However, the charged particles of the plasma can carry currents and the sustain isatin Fields. Magnetohydodynomic:
represents the "simplest" generalization of fluid mecians to include clanged particles and electromagnetic fields.
when the collision frequency is sufficiently small, the dynamics of individual particles become increasingly more important in. modeling the system. Magretonyarodgiamics (MHD) is thus a special limit ot plasma physios winch is the subject of the dynamics of caved partite systems when the solar decencies are not necessarily large. kinetics theory is used for the la it.
- Most astrophysical obits are made of plasma: gas with a significant ionized fraction.
$\rightarrow 90 \%$ of the luminous be classified as plasma
- sometimes, the neutral fluid equations can be used eaten for plasmas a askophyjics. This departs an the problem being consideste. For other problems MHD andlor heretic theory is requited.
In shout: plasma physics
$\not L^{\text {rdyanmics of individat patimper }}$
MHO
$\downarrow \longmapsto \varepsilon \& M$ unimportant
Flu: Meimatios
[MHD \& fluid mertanies are special cases of plain physics
- Dynamical Theories
- dynamical theory implies time evolution theory
- Mechanics, $\Sigma \& M, Q M$ examples common features: (1) way of expressing state of system' (2) Equs for time evolution
Mechanics. $\vec{x}_{i}(t), \vec{P}_{i}(t)$: Newtons' laws $£ M$: $\vec{E}(\vec{x}, t), \vec{B}(x, t)$: Maxwells $\varepsilon_{q} n$ $Q M: Y(x, t)$: Time dependent Schrodinger eq
- fluids \& plasma need (i) \& (2) as well
- These requirements can be expressed geometrical. using concept of "phase space": the space such that each of the variables needed to define the state of the system corresponds to 1 dimension. For state functions that are continuous, the phase space is infinite dimensional. The
State of a system at any time corresponds to 1 point in the phage space, and equations describe a trajectory through this spall.
\therefore Levels of Dynamical theory

plasmas

what determines when we can use a particular level?
More rigor later \rightarrow but a physical description
follows

Explanation of the Levels of Dynamical theories
All microscopic systems obey Quantum mechanics.
However we. can treat a collection of N particles classically when the characteristic distance between particles is large enough so that there is little interference between their. wavepacine". condition for classical treatment is that $n^{-1 / 3}>\lambda_{d}=\frac{h}{p}=\frac{h}{\sqrt{m k_{b} T}}$
where n is particle density and λ_{d}
is the De Broglie wavelength. The quantity $n^{-1 / 3}$ is just the typical interparticle spacing and momentum $p=m V_{t h}=m \sqrt{\frac{h_{b} T}{m}}$ for a thermal gas. Eau (1) implies that each individual warepadet is isolated and expectation valves can be prated classically. (Ehrenfest's theorem). This explains moving from level on to 1. on pages.

If N is large then it is too impractical to solve equations for all individual particles. Then one mores to Level 2 nd uses $f(\vec{x}, \vec{u}, t)$ distribution function, which is
the particle number density in \square space (\vec{x}, \vec{u}) at time t.
A dynamical theory then requires an equation for f. (Vlasos or Boltzmann equation)

Level 3 treats the fluids as continua.
Since a gas is a flowing fluid and ' We know. ${ }^{\text {tax }}$ a gas whose center of mass is at rest Cam be described by 2 variables $(e . g . \rho, T)$ a moving gas requires $3 \quad(\rho(\vec{x}, t), \vec{T}(x, t), \vec{v}(\vec{x}, t))$.

For a plasma we must also have an. equation for $\vec{B}(x, t)$ since magnetic fields can be embedded. Since astrophysical plasmas are usually good conductors, on large enough scales $\vec{E}=-\vec{V} \times \vec{B}$ as the plasma shorts out "microsuraic" electric fields from currents. This is the: MHO regime. On smaller scales, there are charge separations, and $\vec{E}_{\text {mansion }}$ must be considered. This two-fludreginge is between MHD \& vlasic theory and is thus Level 2.5 .

Comment on turbulence:
when fluid or plasma systems are subject to rident disturbances they can become turbulent iie.incu: motions which appear to be chaotic and seem unpredictable. we will see how even though system in principle has dynamical equations, in practice they cannot easily be solved for turbulent flows.

Liowiville's theorem
consider a dynamical system whose state is preswibed by position o momentum woods.
$\left(q_{s}, p_{s}, s=1, \ldots 6 \mathrm{~N}\right)$ and satisfies Hamilton's eq not notion

$$
\begin{align*}
& \dot{p}_{s, i}=-\frac{\partial H}{\partial q_{s}} \quad H=T+V \tag{3}\\
& \dot{q}_{s,}=\frac{\partial H}{\partial p_{s}} \tag{2}
\end{align*}
$$

(a classical system of N particles satisfies this system of equs)

Define ensemble: set of many replicas of "identical" systems except being at different, misstates at some given time. each member of the ensemble is represented by a point in the phase space.
(e.g. Snapshot of a collection of particles $\vec{q}_{s}(t), \vec{p}_{s}(t) \longrightarrow$ a point in $6 N+1$ dimensional
\longrightarrow a point in phase space for N particles
$(1 \leq S \leq N)$
eg. fluid

we can define ensemble density
fens as the density of ensemble points at a given location in phase space: egg.
$\operatorname{Sens}\left(\vec{q}_{s}, \vec{P}_{s}, t\right)$ for our system of particles
\rightarrow Consider one "member of the ensemble ($6 N+1$ values need tospecifing
\vec{q}_{s}, \vec{p}_{s} and its trajectory $\vec{q}_{s}(t), \vec{p}_{s}(t)$.
if we measure density as a function of time varying on this trajectory Liouville's theorem is

$$
\begin{equation*}
\frac{D \rho_{\text {ens }}}{D t}=0 \tag{4}
\end{equation*}
$$

where $\frac{D}{D t}$ is time derivative along the trajectory. To prove \rightarrow
\therefore Proof of Liouvilles the
if, $\left(q_{s} p_{s}\right)$ and $\left(q_{s}+\delta q_{s}, p_{s}+\delta p_{s}\right)$ denote
the system at times t and $t+\delta t$ then

$$
\begin{equation*}
\frac{D \rho_{\text {ens }}}{D t}=\lim _{\delta t \rightarrow 0} \frac{\rho_{\text {ens }}\left(q_{s}+\delta q_{s}, p_{s}+\delta p_{s}, t+\delta t\right)-\rho_{\text {ens }}\left(q_{s} p_{s}, t\right)}{\delta t} \tag{5}
\end{equation*}
$$

expansion in Taylor series:

$$
\begin{aligned}
\operatorname{Sens}\left(q_{s}+\delta q_{s},\right. & \left.p_{s}+\delta p_{s}, t+\delta t\right)= \\
& \operatorname{sens}^{\left(q_{s}, p_{s}, t\right)}+\sum_{s=1}^{3 \cdot N} \delta q_{s} \frac{\partial \text { Sens }}{\partial q_{s}}+\sum_{s=1}^{3 N} \delta p_{s} \frac{\partial \rho_{\text {ens }}}{\partial p_{s}}+\delta d t \frac{\partial \rho_{\text {en }}}{\partial t}
\end{aligned}
$$

plugging into (5) gives:

$$
\begin{equation*}
\frac{D_{\rho e n s}}{D t}=\frac{\partial \rho_{\text {ens }}}{\partial t}+\sum_{s} \dot{q}_{s} \frac{\partial \rho_{\text {ens }}}{\partial q_{s}}+\sum_{s} \dot{p}_{s} \frac{\partial \rho_{\text {ens }}}{\partial p_{s}} \tag{6}
\end{equation*}
$$

now let us derive another result that we will use in conjunction with (6) to show why right side vanishes.:
The continuity equation applies to any mass conserving system $\&$ states that

$$
\begin{equation*}
\frac{\partial}{\partial t} \int \rho d V=-\underbrace{\rho \stackrel{\rightharpoonup}{V} \cdot d \vec{S}}_{\underbrace{\rho}_{\text {outward }}} \tag{7}
\end{equation*}
$$ time derivative of mass

using Gauss' theorem

$$
\begin{aligned}
& \because \int \rho \vec{v} \cdot d \vec{s}=-\int \nabla \cdot(\rho \vec{v}) d V \\
& \Rightarrow(7) \Rightarrow \\
& \int\left[\partial_{t} \rho+\nabla \cdot(\rho \vec{v})\right] d V=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { so } \\
& \frac{\partial \rho}{\partial t}+\vec{r} \cdot(\rho \vec{r})=0 \\
& r e
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\rho\left[\sqrt{v}+\vec{v} \cdot \overrightarrow{\cdot \rho}=0=\frac{\partial \rho}{\partial t}+\vec{v} \cdot \nabla \rho=0\right.
\end{aligned}
$$

since it must be true for any
volume:

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot(\rho \vec{v})=0 \tag{8}
\end{equation*}
$$

this applies for a density in regular 3-space or for an ensemble density in a volume of phase space. Thus
plugging into (6) $\begin{gathered}\text { in prase } \\ \text { gives }\end{gathered}$

$$
\begin{aligned}
& \Rightarrow \frac{\partial \text { sens }}{\partial t}+\sum_{s} \dot{q}_{s} \frac{\partial \rho_{\text {sens }}}{\partial q_{s}}+\sum_{s} \dot{p}_{s} \frac{\partial \text { sens }}{\partial p_{s}}+\rho_{\text {ens }} \sum_{s}\left(\frac{\partial q_{s}}{\partial q_{s}}+\frac{\partial \dot{q}_{s} s p_{s}}{\partial p_{s}}=0\right.
\end{aligned}
$$

$$
\begin{align*}
& \varepsilon_{\ell n:}(2) q(3) \tag{10}
\end{align*}
$$

> gereralited diremence
> using all coordinates
\because Collisioness Boltzmann Equation
Consider. N classical particles, all of same type.

- 6 N position \& velocity coords.
call this space "r.space", and a point in Γ represents a state of the system
- Define " μ-space" as the 6 dimensional position a velocity space Each particle is represented by a point in μ space at some time
the system state can be determined by N points in μ space. Note correspondence: [1point in 「-space $\leftrightarrow N$ points in μ space] Both describe state of system
- A trajectory in ए-space gets mapped to N trajectories in M-space
Define distribution function in μ space

$$
\begin{aligned}
& \text { Fine distribution function in } M \text { space } \\
& f(\vec{x}, \vec{u}, t)=\lim _{\delta V \rightarrow 0^{+}} \frac{\delta N}{\delta V}, V \text { is } \begin{array}{l}
\text { volume }
\end{array}
\end{aligned}
$$

$\delta V \rightarrow O^{+}$means take δV to small volume compared to system size, but still containing many particles.
$f(\vec{x}, \vec{u}, t)$ is density of points in μ-space

We can derive a similar
equation to Liouville's the for $f(\vec{x}, \vec{u}, t)$ if point trajectories in μ space satisfy

$$
\begin{align*}
& \dot{\vec{u}}=-\vec{\nabla}^{H} H ; \quad \vec{\nabla}=\hat{e}_{x} \partial x+\hat{e}_{y} \partial_{y}+\hat{e}_{z} \partial_{z} \tag{11}\\
& \dot{\vec{x}}=\vec{\nabla}_{u} H ; \quad \vec{\nabla}_{u}=\hat{e}_{x} \frac{\partial}{\partial u_{x}}+\hat{e}_{y} \frac{\partial}{\partial u_{y}}+\hat{e}_{z} \frac{\partial}{\partial u_{z}} \tag{12}
\end{align*}
$$

(Since we needed such relations in the proof)
\rightarrow in Γ space, Hamiltaion H is $f n$ of $6 N+1$ variables (6 N words + time)
\rightarrow in μ-space H is function of 7 variables 6 words + time
\rightarrow when the N particles are non-interacting $H(\vec{u}, \vec{x}, t)=\frac{1}{2} u^{2}+\phi(\vec{x})$ for particle with $\operatorname{coords}(\hat{u}, \hat{x})$
if particles interact, there are problems:
suppose particle has coords (\vec{u}, \vec{x}) and interacts with nearby particle at $\left(\vec{u}^{\prime}, \vec{x}^{\prime}\right)$. This interaction can be described by potential $\phi\left(\vec{x}, \vec{x}^{\prime}\right)$
(and this incorporative the $6 N+1$ dimensions of Γ-space is possible by wnsidering a different x^{\prime} for each partide interacting with the original)
But $\phi\left(\vec{x}, \vec{x}^{\prime}\right)$ cannot be written as only a function of \vec{x}, so cannot be incorporated into an H that satisfies (II) \& (12)
2) Itamiltrnion dynamics of N particles is always possible in r-space (phase space) but only possible in μ space when particles are not interacting, ie. collisionless

For a collisiontess system then

$$
\frac{D f}{D t} \equiv \frac{\partial f}{\partial t}+\dot{\vec{x}} \cdot \nabla f+\dot{\vec{u}} \cdot \nabla_{u} f=0
$$

we can write this as

$$
\frac{\partial f}{\partial t}+\dot{x}_{i} \partial_{i} f+\dot{u}_{i} \partial_{u_{i}} f=0 \quad \begin{align*}
& \text { (repeated indices } \tag{13}\\
& \text { are summed) }
\end{align*}
$$

(7) collisionless Boltzmomn equation
when interactions are presented, (13) must be modified
Note: To derive 13 most directly, start with conservation of mass:

$$
\begin{align*}
& \int \frac{\partial f}{\partial t}\left(\vec{x}_{,}^{\prime} \vec{u}_{j}^{\prime} t\right) d^{3} x^{\prime} d d^{3} \vec{u}^{\prime}+\int f\left(\vec{x}^{\prime}, \tilde{u}^{\prime}, t\right) \vec{u}_{i}^{\prime} d \vec{S}^{\prime \prime} d^{3} \vec{u}^{\prime} \\
& +\int f\left(\vec{x}^{\prime}, \vec{u}^{\prime}, t\right) \vec{q}, \cdot d \vec{S}_{u} d^{3} \vec{x} \tag{x}\\
& =0
\end{align*}
$$

$$
\begin{aligned}
& \text { (where } \vec{u}^{\prime}=\frac{d \vec{x}^{\prime}}{d t} ; \quad \vec{q}^{\prime}=\frac{d \vec{u}^{\prime}}{d t} ; \quad \vec{s}=\left(S_{i} ; S_{j}, S_{k}\right) \\
& \text { depends }{ }^{\downarrow} \quad S_{i}=n_{i} d x_{j} d x_{k} \\
& \text { on forces } \vec{S}_{u}=\left(S_{u, i}, S_{u, j}, S_{u, k}\right) \\
& \left.S_{u_{i} i}=n_{i} d u_{j} d u_{k}\right) \\
& \Rightarrow(x) \Rightarrow \int[\frac{\partial f}{\partial t}+\vec{\nabla} \cdot\left(f \vec{u}^{\prime \prime}\right)+\underbrace{\overrightarrow{\nabla_{u}}}\left(f \vec{q}^{\prime}\right)] d^{3} x^{\prime} d^{3} u^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& \text { variables }
\end{aligned}
$$

if forces per unit mass are in dependent of particle velocity

$$
\frac{F}{m}=\frac{d \vec{u}}{d t}=\vec{a}
$$

Note: if \vec{F} does depend on \vec{u} but is \perp to \vec{U} such as $\vec{U} \times \vec{B}$:
then $\vec{V}_{\mathbf{u}} \vec{F}^{\vec{F}}=0$: to see $\vec{\nabla}_{4} \cdot \vec{F}=\frac{\partial}{\partial u_{i}}\left(\varepsilon_{i n} u_{j} b_{k}\right)$

Important Invariants
In Γ space, suppose that ensemble points at time t fill phase space $d^{n} q_{s} d^{n} p_{s} \quad q_{s}=x_{s}$ and at time $t^{\prime \prime}$ fill phase space $d^{n} q_{s} d^{n} p_{s}^{\prime}$ the conservation of ensemble points in phase space implies

$$
\begin{equation*}
\rho_{\text {ens }} a^{n} q_{s}^{\prime} d^{n} P_{s}^{\prime}=\rho_{\text {ens }}^{l} d^{n} q_{s} d^{n} p_{s} \tag{13b}
\end{equation*}
$$ and Liouvilles theron $\Rightarrow \rho_{\text {ens }}\left(q_{n}, \theta_{1} t\right)=\rho_{\text {ens }}^{\prime}\left(q_{s}^{\prime}, p_{j}^{\prime}, t\right)$

$$
\left.\because d^{n} q_{s}^{\prime} d^{n} p_{s}^{\prime}=d^{n} q_{s} d^{n} p_{s} \quad \begin{array}{l}
\text { (assuming } \\
\text { elastic }
\end{array} \text { (13c) }\right]
$$

For μ space, Liouvilles theorem hollis only tar collisionless systems. In this case

$$
f d^{3} x d^{3} p=f^{\prime} d^{3} x^{\prime} d^{3} p^{\prime} \quad\binom{\text { number conservation) }}{\text { of particles }}
$$

$$
\text { Liousilts tho } \Rightarrow f=f^{\prime}
$$

$$
\begin{equation*}
\Rightarrow d^{3} x d^{3} p=d^{3} x^{1} d^{3} p^{1} \tag{13d}
\end{equation*}
$$

we will use these later

Collisional Boltzmann Equation

Need to modify purely collisiontess Boltzmann equation to induce interactions between parties We consider the case of a dilute gas $n a^{3}<c \mid \quad$ (small particle radios a compared to interparticle spacing).
and n_{θ} long-range interactions between particles.
Now the collisimiess Bulterann equation says that $f(\vec{x}, \hat{\theta}, \hat{c}, t)$ does not change along the trajectory of a particle. Collisions can change this by bumping particles to different velocities, thus increasing or decreasing the number b partides in a given element of μ space

$$
\frac{\partial f}{\partial t} d^{3} \times d^{3} u=C_{\text {in }}-C_{\text {out }}
$$

$C_{\text {in }}$, lou 三 rates at which particles enter. or leave dad ${ }^{3}$ from collisions

Consider clastic collisions:
(a) $\vec{u}+\vec{u}_{1}=\vec{u}^{\prime}+\vec{u}_{1}^{\prime} \quad$ (momentum cons.)
($\vec{u}, \vec{u}_{1}=$ particle velocities behove collisions

$$
\text { 5.) }\left\{\begin{array}{c}
\Rightarrow \vec{u}^{\prime} \vec{u}_{l}=\partial \vec{u}^{\prime} \vec{u}_{1}^{\prime} \\
\Rightarrow\left(\vec{u}-\vec{u}_{1}\right)^{2}=\left(\vec{u}^{\prime}-\vec{u}_{i}^{\prime}\right)^{2}
\end{array}\right.
$$

(b) $\frac{1}{2}\left|\vec{u}^{2}\right|+\frac{1}{2}\left|\vec{u}_{1}\right|^{2}=\frac{1}{2}\left|\vec{u}^{\prime}\right|^{2}+\frac{1}{2}\left|\vec{u}_{1}\right|^{2}$ (energy cons)
these equations provide 4 equations for 6 unknowns. $\left(\vec{u}^{u^{3}}, \vec{u}_{1}^{v_{3}^{3}}\right)$; final velocitics, given initial velocities The remaining constraints come from: 1) coplanarity of $\vec{u}^{\prime}, \vec{u}_{1}^{\prime}, \vec{u}, \vec{u}$, for radial force of interactions (e.g_coulomb collisions)
a) impact parameter, whish gives the f of deflection. This cones from microphysics of interaction
statistically, \# 2) is modeled by differential cross section. We assume its given and show how dynamics of system can then be studied:

- consider beam e of particles with number density n_{1} and velocity \vec{u}_{1}, colliding with beam having number density n and velocity \vec{u}. The later beam sees partide flux $\quad I=\left|\vec{u}-\vec{u}_{1}\right| n_{1}$ from first beam Q number per area per time)

Define $\delta_{t} n_{c} \equiv \frac{\text { collisions }}{\text { time -volume }}$ from second beam into
 solid angle $d \Omega$, by interaction with first beam:
n of second lox of n_{1}, that
differential scattering cross section $\left[\frac{d \sigma}{d \Omega}\right]$
(individual interactions are reversible fer elastic scattering so that

$$
\sigma\left(\vec{u}, \vec{u}_{1} \mid \vec{u}_{1}^{\prime}, \vec{u}^{\prime}\right)=\sigma\left(\vec{u}_{1}^{\prime} \vec{u}^{\prime} \mid \vec{u}, \vec{u},\right)
$$

Now
Since $n=f(\vec{x}, \vec{u}, t) d^{3} \vec{u}=$ number per volume
and $I=\left|\vec{u}-\vec{u}_{1}\right| n_{1}=\left|\vec{u}_{1}-\vec{u}_{1}\right| f\left(\vec{x}_{,}, t\right) d 3 u_{1}$

$$
\delta_{t} n_{c}=\sigma\left(u, u_{1} \mid u_{1}^{\prime} u_{1}^{\prime}\right)\left|\vec{u}-\vec{u}_{1}\right| f(x, u, t) f\left(x, u_{1}, t\right) d \pi_{1} d^{3} d d_{1} u_{1}
$$

Since $c_{\text {out }}=\frac{\# \text { collisions }}{\text { time }}$ in $6 \cdot D \cdot$ volume $d^{3} x d^{3} u, \Rightarrow$

$$
C_{\text {out }}=d^{3} x d^{3} u \int d u_{1} \int d \Omega \sigma\left(u_{1}, u_{1}, u_{1}^{\prime}, u_{1}^{\prime}\right) \mid \vec{u}-\vec{u}, f\left(f(x, \vec{u}, t) f\left(x, \overrightarrow{u_{1}, t}\right)\right.
$$

= rate at which particles leave $d^{3} x d^{3} u$ from collisions

To get $C_{i n}$ consider reverse
collisions; that is replace $u^{\prime} \leftrightarrow u$ and $u_{1}^{\prime} \leftrightarrow u_{1}$ straight away we have:

$$
C_{\text {in }}=d^{3} x d^{3} u^{\prime} \int^{3} d^{3} u_{1}^{\prime} \int d \Omega \sigma\left(u, u_{1} \mid u_{1}^{\prime} u_{1}^{\prime}\right)\left(u^{\prime}-u_{1}^{\prime} \mid f\left(x_{1} u_{j}^{\prime} t\right) f\left(x, u_{1}^{\prime}, t\right)\right.
$$

But:
(1) conservation of momentum \& energy for collisions $\Rightarrow \quad\left|u-u_{1}\right|=\left|u^{\prime}-u_{1}^{\prime}\right| \quad \begin{gathered}\text { see page } \\ 17 \text { abe us }\end{gathered}$ and (2) Earlierwe proved, that phase space measures at any times are equal (from Liovirille's thy + conservation of particle number elastic collision assumption) thus for a-aration phase space $d^{3} / x d^{3} u d^{3} u_{1}=d^{3} u^{\prime} d^{3} u_{1}^{\prime} d^{3} x$ (3) we also argued $\sigma\left(u, u_{1} \mid u_{1}^{\prime} u_{1}^{\prime}\right)=\sigma\left(u^{\prime}, u_{1}^{\prime} \mid u, u_{1}\right) . \quad$ Thus $(0,(2),(3)$

$$
\Rightarrow C_{\text {in }}=d^{3} x d^{3} u \int d u_{1} \int d \Omega \sigma\left(u_{1}^{\prime} u_{1}^{\prime} \mid u, u_{1}\right)\left|u-u_{1}\right| f\left(x, u_{1}^{\prime}, t\right) f\left(x, u_{1}^{\prime}, t\right)
$$ comparing to coot we then combine to get:

$$
\frac{\partial f}{D t} d^{3} x d^{3} u=C_{\text {in }}-C_{\text {out }}=d^{3} \times d^{3} u \int d^{3} u_{1} \int d \Omega\left(\sigma(\Omega)\left(f^{\prime} f_{1}^{\prime}-f f_{1}\right)\left[\vec{u}-\vec{u}_{1}\right]\right.
$$

(Where $f^{\prime} \equiv f\left(u^{\prime}\right)$ and $f_{1}^{\prime} \equiv f\left(u_{1}^{\prime}\right)$

$$
f_{1} \equiv f(u) ; \quad f_{1}=f(u,) \quad \longrightarrow
$$

we thus have

> that parties experience ecg. gravity
to recap: right side measures effects of Collisions on distribution function for a dilute gas. (dilute because we assumed only binary,

Maxwellian Distribution
Unitorm classical gas relaxes to maxwell dist. this can be derived from above collisional Bolta.en: consider case when \vec{F} term is negligible, and f is independent of time and space (ie. in equilibrium). Bolt eqn \Rightarrow

$$
f f_{1}=f^{\prime} f_{1}^{\prime}
$$

or $\log f(u)+\log f\left(u_{1}\right)=\log f(u)+\log f_{1}\left(u_{1}^{\prime}\right)$

Suppose $X(y)$ is a conserved quantity,

$$
\text { then } \underbrace{x(u)+X\left(u_{1}\right)}_{\text {nelare }}=\underset{\text { after collision }}{x\left(u^{\prime}\right)+\underset{u^{\prime}}{X\left(u_{1}^{\prime}\right)}}
$$

Since this has same form of previous equation (2) we must be able to write $\log f(u)$ as a linear combination of $x(u)$ hat is: conserved quantities

$$
\log f(u)=C_{0}+\sum_{s}^{t_{5}} C_{5} x_{3}(\vec{u}) \quad\left(C_{0}, C_{5}\right. \text { are constants) }
$$

energy \& the 3 momenta are the complete set of relevant quantities here:

$$
\begin{aligned}
& \log _{e} f(\vec{u})=C_{0}+C_{1} \vec{u}^{2}+C_{2 x} u_{x}+C_{2 y} u_{y}+C_{\lambda_{z}} u_{z} \\
\Rightarrow & \log _{e} f(\vec{u})=-B\left(\vec{u}-\vec{u}_{0}\right)^{2}+\log _{e} A
\end{aligned}
$$

where $C_{0}, C_{1}, C_{2 x}, C_{2 y}, C_{2 z}$, have been replaced by exponentiate $\quad B, A, U_{0 x}, U_{0 y}, U_{0 z}$,

$$
\begin{aligned}
& \Rightarrow f(u)=A e^{-B\left(\vec{u}-u_{0}\right)^{2}} \\
& n=\int_{-\infty}^{\infty} d^{3} u f(u) \Rightarrow A=\left(\frac{\beta}{\pi}\right)^{3 / 2} n
\end{aligned}
$$

\Rightarrow

$$
\begin{aligned}
& f(u)=\left(\frac{B}{m}\right)^{3 / 2} \eta e^{-B\left(\vec{u}-\left(\vec{u}_{0}\right)^{2}\right.} \int_{n \rightarrow \text { 保 }}^{\int f(u) d^{3} u} \\
& \int f(u) d^{3} u
\end{aligned}=\langle u)
$$

note that

$$
\begin{aligned}
& \text { note that } \quad n \Rightarrow S f(u) d^{3} u \\
& \langle\vec{u}\rangle=\frac{1}{n} \int_{-\infty}^{\infty} f(u) \vec{u} d^{3} u=\left(\frac{B}{\pi}\right)^{3 / 2} \int_{-\infty}^{\infty} d^{3} \vec{u}^{\prime}\left(\vec{u}^{2}+\vec{u}_{0}\right) e^{-B \vec{u}^{\prime 2}}
\end{aligned}
$$

(where $\vec{u} \rightarrow \vec{u}^{2}+\vec{U}_{0}$ change of variates
\Rightarrow non-zcro \vec{u}_{0} implies a mean streaming motion
if we go to frame in which
$U_{D}=0$ and consider system of

$$
I_{n} \int_{-\infty}^{x} e^{-u^{2}} u^{2} d u
$$

temperature T, then $B=\frac{m}{2 k_{B} T}$

$$
I_{n=1}=-\frac{\partial I_{n}}{\partial B}
$$

$$
F_{b}=\frac{V_{B}}{V}
$$

and $f(u)=n\left(\frac{m}{2 \pi h_{B} T}\right)^{3 / 2} \exp \left[-\frac{m \vec{u}^{2}}{\partial k_{B} T}\right]$

$$
I_{2}=\frac{1}{2} \sqrt{W_{B}^{3}}
$$

Manual Boltimama:
is a sole to steady -stake boltzmann equation
not surprint!

$$
\begin{aligned}
& \left\langle u^{2}\right\rangle=\left(\frac{B}{\pi}\right)^{3 / 2} \frac{3}{2} \sqrt{\frac{\pi}{B^{3}}} \cdot \frac{\pi}{2} \quad \frac{22 a}{2} \\
& =\frac{3}{2 B}=\frac{3 k T}{m} \text {, for } B=\frac{m}{2 k T} \\
& \frac{1}{2} m\left\langle u^{2}\right\rangle=\frac{-3}{2} k T
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{3 \cdot \frac{1}{2}\left(\frac{\pi}{B^{3}}\right)^{1 / 2} \cdot\left(\frac{\pi}{B}\right)}{\left(\frac{\pi}{B}\right)^{3 / 2}}=\frac{3}{2 B}
\end{aligned}
$$

Conservation equations
$\underline{x}+\underline{x}_{1}=x^{\prime}+\underline{x}_{1}^{\prime} \quad$ for conserved quantity $X\left(\vec{x}_{j} \vec{u}\right)$ before $\&$ after collisions
now let us
derive the equation for the averaged X this is important for eventually deriving the hydrodynamic fluid equs:
We multiply the collisional Boltzmann equation by X. The resit for the RHS after integrating is

$$
\begin{aligned}
& =\int d^{3} u \int d^{3} u_{1} \int d \Omega \sigma(\Omega)\left|\vec{u}-\vec{u}_{1}\right|\left(f^{\prime} f_{1}^{\prime}-f f_{1}\right) X(\vec{u}, \vec{x}) \\
& =\frac{1}{2} \int d^{3} u \int d^{3} u_{1} \int d \Omega \sigma(\Omega)\left|\vec{u}-u_{1}\right|\left(f^{\prime} f_{1}^{\prime}-f f_{1}\right) x(\vec{u}, x)+\underline{x}\left(u_{1},\right)
\end{aligned}
$$

since the RHS of collision Boaz. En is symmetric in $\vec{a}_{\mapsto} \rightarrow \vec{u}$. we can also: go further:

$$
=\frac{1}{4} \int d^{3} u \int d^{3} u_{1} \int d \Omega \sigma(\Omega)\left|\overrightarrow{u^{2}}-\vec{u}_{1}\right|\left(f^{\prime} f_{1}^{\prime}-f f_{1}\right)\left(X(\vec{u}, x)+X\left(\overrightarrow{u_{1}}, x\right)-X\left(\vec{u}^{\prime}, x\right)-X\left(u_{1}^{\prime}, x\right)\right)
$$

because the collision integral in Boltemantern is antisymmetric in $u^{\prime} \leftrightarrow u, u_{1}^{\prime} \rightarrow u^{\prime}$. But from (*) this RHS now $=0$!
the left side of (14) when multiplied (24) by x i integrated is then $=0 \Rightarrow$ we have

$$
\int d^{3} u \underline{X}\left(\frac{\partial f}{\partial t}+u_{i} \frac{\partial f}{\partial x_{i}}+\frac{F_{i}}{m} \frac{\partial f}{\partial u_{i}}\right)=0
$$

manipulation using chain rule gives, using $\partial_{t} x=0$:

$$
\begin{aligned}
& \partial t \int d^{3} u \underline{x} f+\frac{\partial}{\partial x_{i}} \int d^{3} u \underline{x} u_{i} f-\int d^{3} u u_{i} f \frac{\partial x}{\partial x_{i}} \\
& +\frac{1}{m} \int d^{3} u \frac{\partial}{\partial u_{i}}\left(\underline{x} F_{i} f\right)-\frac{1}{m} \int d^{3} u \frac{\partial x}{\partial u_{i}} F_{i} f-\frac{1}{m} \int d^{3} u \underline{x} \frac{\partial F_{i} f}{\partial u_{i}} \\
& =0
\end{aligned}
$$

(surface term $\left.\begin{array}{l}\text { by gauss the }\end{array}\right)$
using the notation $\langle\underline{x}\rangle=\frac{1}{n} \int f x d^{3} u=\frac{\int f x d^{3} u}{\int f d^{3} u}$ with $n=\int f d^{3} u$, we can write ($\left.14 a\right)$ as

$$
\begin{gathered}
\left.\partial_{t}(n\langle\underline{x}\rangle)+\frac{\partial}{\partial x_{i}}\left(n\left\langle u_{i}\right\rangle\right\rangle\right)-n\left\langle u_{i} \frac{\partial x_{i}}{\partial x_{i}}\right\rangle-\frac{n}{m}\left\langle F_{i} \frac{\partial x}{\partial u_{i}}\right\rangle \\
\left.-\frac{n}{m}\left\langle\frac{\partial F_{i}}{\partial u_{i}}\right\rangle\right\rangle=0
\end{gathered}
$$

this tells us how the volume density of any quantity $n\langle x\rangle$ evolves with time
fluid equations first for maxwedlian particle distributions
X is microscope quantity and $n\langle X\rangle$ is macroscopic. thus previous equation $\left(\right.$ where $\left.\langle\underline{x}\rangle=\frac{1}{n} \int x f d^{3} u\right)$

$$
\begin{equation*}
\left.\partial_{t}(n\langle x\rangle)+\frac{\partial}{\partial x_{i}^{-}}\left(n\left\langle u_{i} x\right)\right)-n\left\langle u_{i} \frac{\partial x}{\partial x_{i}}\right\rangle-\frac{n}{m}\left\langle F_{i} \frac{\partial x}{\partial u_{i}}\right\rangle-\frac{n}{m}\left\langle\frac{\partial F_{i}}{\partial u_{i}}\right\rangle\right\rangle=0 \tag{1+6}
\end{equation*}
$$

covides a link between micro \¯o quantities. Fluid equations are macro equations so $(14 b)$ is fundamental.
Recall that ($14 b$) applies for any conserved quantity. Classically, mass is conserved, so lets first consider

$$
X=m \text { in }(14 b)
$$

for \vec{F} indendent 'f u, and all particles of same mass m :

$$
\begin{equation*}
\frac{\partial}{\partial t}(m n)+\frac{\partial}{\partial x_{i}}\left(n m\left\langle u_{i}\right\rangle\right)=0 \tag{15}
\end{equation*}
$$

if we write $\rho=m n$ and $V_{i} \equiv\left\langle u_{i}\right\rangle$ then we have continuity equation

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x_{i}}\left(\rho v_{i}\right)=0 \tag{16}
\end{equation*}
$$

(or $\left.\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0\right)$. This is one of the fundamental fluid equations.
(Second) Now let $X=m u_{i}$ in (14)
\Rightarrow Since u_{i}, x_{i} are independent variables and $\frac{\partial \vec{F}_{i}}{\partial u_{i}}=0$ by assumption.

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(n m\left\langle u_{j}\right\rangle\right)+\frac{\partial}{\partial x_{i}}\left(n m\left\langle u_{i} u_{j}\right\rangle\right)-n F_{j}=0 \tag{17}
\end{equation*}
$$

now define $p_{i j}=n m\left\langle\left(\tilde{U}_{i}-v_{i}\right)\left(u_{j}-v_{j}\right)\right\rangle \begin{aligned} & w_{i}^{* t} \\ & v_{i} \equiv\left\langle u_{i}\right\rangle \\ & (18)\end{aligned}$

$$
\begin{aligned}
& =n m\left\langle u_{i} u_{j}\right\rangle+n m V_{i} V_{j}-n m\left\langle u_{i} V_{j}-n m \frac{V_{i}}{V_{i}}\left\langle V_{i}\left(v_{j}\right)=V_{j}\right.\right. \\
& P_{i j}=n m\left\langle u_{i} u_{j}\right\rangle-n m V_{i} V_{j} .
\end{aligned}
$$

- Fucus (18) in $(17) \Rightarrow$

$$
\frac{\partial}{\partial t}\left(\rho V_{j}\right)+\frac{\partial}{\partial x_{i}} \cdot \bar{p}_{i j}+\frac{\partial}{\partial x_{i}} \cdot\left(\rho V_{i j}\right)-\frac{g_{j}}{m} F_{j}=0
$$

with $20 \Rightarrow \rho \partial_{x} v_{j}-v_{j} \partial .\left(\rho v_{i}\right)-\partial i p_{i j}+v_{i j} \partial_{j}\left(f V_{i}+g v_{i} \partial_{i} v_{j}-\frac{g}{m} F_{j}=0\right.$
En (19) is the momentum equation with I pressure tensor.
(third let $X=\frac{1}{2} m|\vec{u}-\vec{v}|^{2}$ in (140)
this corresponds to conserved energy in collisions for monatomic gas, and constant mean velocity \vec{v}.
the result is then:

$$
\begin{align*}
& \partial_{t}(\rho \varepsilon)+\frac{\partial}{\partial x_{i}}\left(\rho \varepsilon v_{i}\right)+\frac{\partial Q_{i}}{\partial x_{i}}+P_{i j} \Lambda_{i j}=0 \tag{20}\\
& \left.\varepsilon \equiv \frac{1}{2}\langle | \vec{u}-\left.\vec{v}\right|^{2}\right\rangle=\text { internal energy permass (energy era) } \\
& \left.\left.\vec{Q} \equiv \frac{\rho}{2}\langle | \vec{u}-\vec{v}\right)|\vec{u}-\vec{v}|^{2}\right\rangle=\text { energy flux (chits: enewt } \\
& \Lambda_{i j}=\frac{1}{2}\left(\frac{\partial v_{i}}{\partial x_{j}}+\frac{\partial v_{j}}{\partial x_{i}}\right) \tag{16}
\end{align*}
$$

Now simplity (14) \& (20) using
The results are:

$$
\begin{align*}
& (14) \rightarrow \rho\left(\frac{\partial V_{i}}{\partial t}+v_{i} \frac{\partial v_{j}}{\partial x_{i}}\right)=-\frac{\partial P_{j i}}{\partial x_{i}}+\frac{\rho}{m} F_{j} \tag{21}\\
& (\partial u) \rightarrow \rho\left(\frac{\partial \varepsilon}{\partial t}+v_{i} \frac{\partial \varepsilon}{\partial x_{i}}\right)+\frac{\partial Q_{i}}{\partial x_{i}}+P_{i j} \Lambda_{i j}=0
\end{align*}
$$

$\operatorname{eqn}(16),(21),(2 d)$ do represent mass, momentum, and energy conservation but these represent 5 equs with
14 unhawns $!$): $\vec{V}(3$-components)
$P_{i j}(6 \div$ components, since symativir)
$\rho(y-$ component $)$
Q: (3-components)
$\varepsilon(1$-component)
Thus we need relations between these quantities to close system of equations
equs $(16),(21),(22)$ are called the "moment" equations sine they arise from multiplying : Boltzmann eqn by powers of $0,1,2$ velocities and integrating over velocity.

Not distinction between

$$
U_{i} \& V_{i}
$$

Alternatively:
$\tau_{\text {mean velocity of }}$ of individual partide

$$
\begin{aligned}
& \text { b ven lompont } \\
& \langle\vec{U}\rangle=\vec{V} \\
& \text { Trahdom component }
\end{aligned}
$$

We argued before, that collisions set up a maxwellian distribution when frequent enough. Now let us See what this implies for 'reducing the number of variables, and a "simple" Set of equs:
Assume that distribution function
is Maxwellian:

$$
\begin{equation*}
\xi^{(0)}(\vec{x}, \vec{u}, t)=n(\vec{x}, t)\left[\frac{m}{2 \pi x_{b} T(x, t)}\right]^{3 / 2} \exp \left[-\frac{m(\vec{u}-\vec{v}(x, t))^{2}}{2 k_{b} T(\vec{x}, t)}\right] \tag{23}
\end{equation*}
$$

where we write x, t dependencies explicitly.
Using (23) we have

$$
\begin{gathered}
P_{i j}=\rho\left(\frac{m}{2 \pi k_{b} T}\right)^{3 / 2} \int d^{3} U U_{i} U_{j} \operatorname{Exp}\left[-\frac{m U^{2}}{2 k_{b} T}\right] \\
\vec{U}=\vec{h}-\vec{V}
\end{gathered}
$$

Integral vanishes when integrated is odd \Rightarrow

$$
p_{i j}=p \delta_{i j} \Rightarrow 3 P=p_{i j} \int_{i j} \Rightarrow p=\frac{1}{3} p_{i j} \delta_{i j}=n k T(24)
$$

Which comes from integrating

$$
\int_{-\infty}^{\infty} U^{U^{2}} e^{-A U^{2}} d U=\frac{1}{2} \sqrt{\frac{\pi}{A^{3}}}
$$

- We can also see that the flux \vec{Q} satisfies
$\vec{Q}=0$, since it is odd integral.
- From definition of $\left.\varepsilon=\left.\frac{1}{2}\langle | V\right|^{2}\right\rangle$ We also have that

$$
\begin{equation*}
\varepsilon=\frac{3}{2} \frac{k_{b} T}{m}=\frac{3}{2} \mathrm{P} / \rho \tag{26}
\end{equation*}
$$

thus; using 24, 25, 26 we have eliminated \vec{B} variables of $\vec{Q}, 5$ variables of the original $p_{i j}$ tensor, and ε can be written is function of p, thus $14-9=5$ variables left and 5 equations!
Using $P_{i j}=p \delta_{i j}$ we also have

$$
\begin{equation*}
p_{i j} \Lambda_{i j}=\frac{1}{2} p \delta_{i j}\left(\frac{\partial V_{i}}{\partial x_{j}}+\frac{\partial V_{j}}{\partial x_{j}}\right)=p \vec{\nabla} \cdot \vec{V} \tag{1,7}
\end{equation*}
$$

from den of $\Lambda_{i j}$ below eau (21).
Using (24), in (21) gives
momentum: $\frac{\partial \vec{V}}{\partial t}+(\vec{V}-\vec{\nabla}) \vec{V}=-\frac{1}{\rho} \vec{\nabla} p+\frac{\vec{E}}{m}$
using $(25),(26) \&(27)$ in (22) gilts
nagy: $\frac{\rho\left(\frac{\partial \varepsilon}{\partial t}+\vec{\nabla}-\vec{\nabla} \varepsilon\right)+\rho \vec{\nabla} \cdot \vec{V}=0}{\text { continuity }}=0$

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0
$$

Trans port Processes:
, In "previous derivation $\vec{Q}=0$ so no
(A) heat flow.
\Rightarrow we also had $P_{i j}$ being diagonal; this means that momentum cannot be
(B) transport from one layer ot fluid to another. This implies no shear forces

Both (A) \& (B) resulted from assumption of maxuellian Disvibution: can immediately see that some departure from Maxwellian is required for transport:

Heat flows
from Hot to Cold; in neighborhood of P distribution is not isotropic and not maxucllian!
we need to consider perturbations around Maxuellian distribution'

$$
\begin{align*}
& f(x, u, t)=f^{(0)}(\vec{x}, u, t)+g(x, u, t) \tag{31}\\
& g=f-f^{(c)} \prod_{\text {maxwellian }} \uparrow_{\text {small departure }}
\end{align*}
$$

putting (31) in Boltzmann equation (page 5 above)

1. Collistaa integral is

$$
\begin{aligned}
& \int d^{3} u_{1} \int d \Omega\left|\vec{u}-\vec{u}_{1}\right| d(\Omega)\left(f^{\prime} f_{1}^{\prime}-f f_{1}\right) \quad\binom{f u n c t i o n ~ o f ~}{\vec{u}} \\
= & \int d^{3} u_{1} \int d \Omega|\vec{u}-\vec{u},| d(\Omega)\left(f_{1} g^{\prime} g_{1}^{\prime}+f_{1}^{(0)} g^{\prime}-f^{(0)} g_{1}-f_{1}^{(0)} g\right)
\end{aligned}
$$

to first order.
A typical term ${ }^{k}$ has magnitude

$$
-\int d^{3} u_{1} \int d \Omega\left|\vec{u}-\vec{u}_{1}\right| \sigma(\Omega)\left(f_{1}^{(1)} g\right) \simeq-\vec{u}_{\text {rel }} n \sigma g(x, u, t)
$$

- $\left|\vec{U}_{\text {reel }} n \sigma\right|$ is a collision frequency with units $\frac{1}{\pi}=7$. Collision integral is roughly

$$
-\frac{9}{\tau}=>\quad \text { Boltzmann } \operatorname{ten}:
$$

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}+\vec{u} \cdot \vec{\nabla}+\frac{\vec{F}}{m} \cdot \nabla_{u}\right) f=\frac{-\left(f-f^{(0)}\right)}{\tau}=-\frac{g}{\tau} \tag{32}
\end{equation*}
$$

this term is responsible for 9 : when there are strong spatial gradients. To order of mag

$$
\begin{aligned}
\frac{|u| f^{(0)}}{L}=\frac{|g|}{\tau} \Rightarrow \frac{|g|}{f_{0}} & <l \frac{|u| \tau}{L} \ll l
\end{aligned}
$$

where L is gradint scale orer winch properties change.
meon free patt

$$
\begin{aligned}
& \therefore \frac{|g|}{f^{(0)}}=\frac{|u| L}{L} \approx \frac{\lambda_{m f p}}{L} \equiv \alpha \ll 1 \\
& \Rightarrow f=f^{(0)}+\alpha f_{1}^{(0)}+\alpha^{2} f_{2}^{(0)}
\end{aligned}
$$

Chapmon - Enskog exparsion.
to compute "corrections" vge lowest order in (3)

$$
\begin{aligned}
& =7 \\
& g=-\tau\left(\partial_{t}+u_{i} \partial_{i}+\frac{F_{i}}{m} \partial u_{i}\right) f^{(0)} \\
& \text { Froḿ }(23) f=f^{(0)}=\frac{m^{3 / 2} n(x, t)}{\left(2 \pi h_{B}+(x, t)\right)^{3 / 2}} \sum_{x p}\left[-\frac{m(\vec{u}-\vec{v}(\vec{x}, t))^{2}}{2 u_{B} T(\vec{x}, t)}\right], f=f(n, T, \vec{v})
\end{aligned}
$$

$$
\begin{align*}
& (\rho=n k T) \tag{28}
\end{align*}
$$

using (23) for $f^{(0)}$ in (33) and using the $f(0)$ "moment" equations for continvity (30), momentom (x)) and enengy densty $(24) ;$, we get (set $F_{i}=0$ to sinitity

$$
\begin{equation*}
g=-\tau\left(\frac{1}{T} \frac{\partial T}{\partial x_{1}} U_{i}\left(\frac{m}{2 k_{B} T} V^{2}-\frac{5}{2}\right)+\frac{m}{k_{0} T} \Lambda_{i j}\left(V_{i} V_{j}-\frac{1}{3} \delta_{i j} \cdot V^{2}\right)\right] f^{(0)} \tag{34}
\end{equation*}
$$

with $\Delta_{i j}=\partial_{i} V_{j}+\partial_{j} V_{i} ; \vec{U} \equiv \vec{U}-\vec{V}$
\rightarrow that g depends linearly on velocity and imperature gradients is expected, based on our simple argument before, for deviations from Maxwellian dist. \rightarrow gradients imply deviation from Maxuellian.
\rightarrow Linear dependence on τ implies that the longer the time between collisions, the more the deviation from Maxwellian can be sustained, and thus a larger correction g. (collisions tend to make f coper to $f^{(0)}$).
\rightarrow Now we can calculate $P_{i j}, \vec{Q}$, and ε for the non-Maxwellian distribution $f=f^{(0)}+g$ with $\langle A\rangle \equiv \frac{1}{n} \int A f d^{3} u$ as deft for averaging of quantity A,
from before: 9 contributes
from $f=f^{\left(0^{\prime}+\right.}+g$

$$
\vec{Q}=\frac{n m}{2}\left\langle\vec{U} V^{2}\right\rangle=\frac{\rho}{2} \int d^{3} U \vec{U} U^{2} g
$$

I Only even power's contribute to integrand so only list term on right of (34) contributes:

$$
\begin{align*}
\sum_{Q}^{\partial}=-K \nabla T \text {, (where } K & =\frac{m T}{6 T} \int d^{2} U U^{4}\left(\frac{m}{2 k_{B} T} v^{2}-\frac{5}{2}\right) f^{(6)} \\
& \left.=\frac{5}{2} n T \frac{k_{B}^{2} T}{m}\right) \tag{35}
\end{align*}
$$

That $\vec{Q}=-\mathbb{K} \nabla T$ is a familiar form of heat transport equation (which we have derived from $a^{\text {" "bottom up" approach). }}$

Also:
$p_{i j}=n m\left\langle V_{i} V_{j}\right\rangle$ is no longer diagonal
instar:

$$
=p \delta_{i j}+\pi_{i j}
$$

$$
(35 a)
$$

with $\pi_{i_{j}} \equiv m \int d^{3} \cup V_{i} U_{j} g$,
from we then have

$$
\pi_{i j}=-\frac{\tau m^{2}}{k_{B} T} \Lambda_{k 1} \int d^{3} U_{i} V_{j}\left(U_{k} U_{l}-\frac{1}{3} \delta_{k_{e}} V^{2}\right) f^{(0)}
$$

but for this integral, only isotropic contributions Survive, since $f^{(0)}$ is isotropic (no dependence on vector U only its magnitude).
this means \rightarrow

$$
\begin{aligned}
& n s \rightarrow \\
& \left\langle U_{i} U_{j} U_{k} U_{l}\right\rangle=a \delta_{i j} \delta_{n}+b \delta_{i k} \delta_{j e}+c \delta_{i k} \delta_{j n} \\
& \left\langle U_{i} U_{j} \delta_{k l} V^{2}\right\rangle=d \delta_{i j} \delta_{n l}
\end{aligned}
$$

$$
\rightarrow
$$

to find $a, b_{j} c$: inced: 3 equations.
Multiply by each separate δ combination:

$$
\begin{aligned}
\left\langle U^{4}\right\rangle & =9 a+3 b+3 c \\
\left\langle U^{4}\right\rangle & =3 a+9 b+3 c \\
\left\langle U^{4}\right\rangle & =3 a+3 b+9 c \\
\therefore \quad 0 & =6 a-6 b \\
\Rightarrow \quad & =6 a-6 c \\
\Rightarrow \quad b & =6 b-6 c \\
\Rightarrow \quad b & =a=\frac{\left\langle v^{4}\right\rangle}{15}
\end{aligned}
$$

also $\quad\left\langle v_{i} v_{j} u^{2} \delta_{n l}\right\rangle=d \delta_{i j} \delta_{n e}$

$$
\begin{aligned}
& \Rightarrow 3\left\langle U^{4}\right\rangle=9 d \Rightarrow d=\frac{\left\langle U^{4}\right\rangle}{3} \\
& \Rightarrow \Lambda_{k_{l}}\left\langle U V_{j} U_{n} U_{l}-\frac{U_{i} U_{j}}{3} U^{2} \delta_{k l}\right\rangle \\
& =\Lambda_{n e}\left\langle U^{4}\right\rangle\left(\delta_{i j} \delta_{n e}+\frac{\delta_{n} \delta_{j} t}{15}+\frac{\delta_{i e} \delta_{x}}{15}-\frac{1}{9} \delta_{i j} \delta_{n e}\right\rangle \\
& =\frac{2}{15}\left\langle U^{4}\right\rangle \Lambda_{i 5}-\frac{6}{135} \Lambda \delta_{i j}=\frac{2}{15}\left\langle v^{4}\right\rangle\left(\Lambda_{i j}-\frac{1}{3} \delta_{i j} \Lambda\right)
\end{aligned}
$$

thus

$$
\begin{equation*}
\Lambda_{i j}=\frac{\partial_{i} V_{j}+\partial_{j} V_{i}}{2} \tag{37}
\end{equation*}
$$

$$
\pi_{i j} \propto\left(\Lambda_{i j}-\frac{1}{3} \cdot \delta_{i j} \Lambda\right)
$$

We can write

$$
\begin{equation*}
\pi_{i j}=-2 \mu(\Lambda_{i j}-\underbrace{\frac{1}{3} \delta_{i j} \nabla \cdot v}_{=\frac{1}{3} \Lambda \delta_{i j}}) \tag{38}
\end{equation*}
$$

to get μ cualute one component of $\pi_{i j}:(\operatorname{san} p 35)$

$$
\begin{aligned}
& \pi_{12}=\frac{\tau m^{2}}{k_{k} T} \lambda_{n e} \int d^{3} V U_{1} U_{2}\left(U_{k} U_{e}-\frac{1}{3} \delta_{n e} U^{2}\right) f^{(1)} \\
& =-(2) \frac{\tau m^{2}}{L_{B} T} \Lambda_{12} \int d^{3} U V_{1}^{2} V_{2}^{2} f^{(0)} \text { since } \tau \frac{m 1 \frac{n}{m}}{m} \\
& {\left[\tau c_{c}^{2} \frac{8}{2}\right]=\frac{\mu}{\rho}} \\
& =[\nu]=\Omega \cdot v
\end{aligned}
$$

thus: $\mu=\frac{m^{2} \tau}{n_{B} T} \int d^{3} U U_{1}^{2} U_{2}^{2} f^{(0)}=\tau n k_{B} T$

 thus has coefficient μ, this is viscosity dens in means momentum transport is possible between different folios moving at different velocities
More on this later. More on this later.

With expressions for \vec{Q} and $\dot{P}_{i j}$ we put them into the moment equations:
using $p_{i j}$ and $\Lambda_{i j} \equiv \frac{1}{2}\left(\partial_{j}-v_{i}+\partial_{i} v_{j}\right) ; \quad \pi_{i j}=-2 \mu\left(\Lambda_{i j}-\frac{1}{3} \delta_{i j} \vec{\nabla} \vec{v}\right)$

$$
\Rightarrow \frac{\partial P_{i j}}{\partial x_{j}}=\frac{\partial P}{\partial x_{i}}-\mu\left[\nabla^{2} v_{i}+\frac{1}{3} \frac{\partial}{\partial x_{i}}(\vec{\nabla} \cdot \vec{v})\right] \text { for constant } \mu
$$

then pluygingiinto (IX)

$$
\rho\left(\frac{\partial V_{j}}{\partial t}+V_{i} \frac{\partial V_{j}}{\partial x_{i}}\right)=-\frac{\partial \rho}{\partial x_{j}}+\mu\left[\nabla^{2} V_{j}+\frac{1}{3} \frac{\partial}{\partial x_{j}}\left(\nabla^{\overrightarrow{2}} \cdot \vec{V}\right)\right]+\frac{\rho}{m} F_{j}(31)
$$

from $(38),(35 a)$ deter of $\Lambda_{i j}$, we also have

$$
\begin{equation*}
P_{i j} \Lambda_{i j}=p \nabla \cdot V-\partial \mu\left[\Lambda_{i j} \Lambda_{i j}-\frac{1}{3}(\nabla-V)^{2}\right] \tag{39,a}
\end{equation*}
$$

plugging (39) and (38) for ${ }^{[}$in $^{\prime}$ into every moment eq (20)

$$
\Rightarrow\left(\frac{\partial \varepsilon}{\partial t}+\vec{V} \cdot \vec{\nabla} \varepsilon\right)-\vec{\nabla} \cdot(\vec{K} \vec{\nabla} \vec{\nabla})+\rho \vec{\nabla} \cdot \vec{V}-\partial \mu\left[\Lambda_{i} \Lambda_{i j}-\frac{1}{3}(\vec{\nabla}-\vec{V})^{2}\right]=0
$$

now, μ term in (40) and ($0 . V$) term in (39) ire often: small, if we neglect them

$$
\begin{align*}
& \Rightarrow \text { miomerstum } \tag{39}\\
& \frac{\partial \vec{V}}{\partial t}+(\vec{V} \cdot \vec{\nabla}) \vec{V}=-\frac{1}{\rho} \vec{\nabla} p+\vec{F}+\frac{\mu}{\rho} \nabla^{2} v \\
& \left.\left.\Rightarrow \quad \rho\left(\frac{\partial \varepsilon}{\partial t}+\vec{V} \cdot \overrightarrow{\nabla \varepsilon}\right)-\vec{\nabla} \cdot(\vec{K} \vec{\Pi})+\vec{p} \vec{\nabla} \cdot \vec{V}\right)=0\right\} \\
& \text { weahy compressinle if hept } \\
& \text { bit } \begin{array}{c}
\nabla \cdot v \\
\text { in drppered } \\
\text { Hevin }
\end{array} \\
& \text { constants } \\
& \begin{array}{l}
\text { in } \mu \text { tevm } \\
\left(H^{2}\right)
\end{array} \\
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{v})=0 \\
& \frac{\partial \rho}{\partial t}+\rho(\nabla \cdot \vec{v}+v-\nabla \rho=0
\end{align*}
$$

are the fluid equations, and we have now used \vec{F} to represent force density.

$$
\begin{aligned}
& \partial_{j} P_{i j}= \\
&=\partial_{i} P+\partial_{j} T_{i j} \\
&= \partial_{i} P-2 \partial_{j}\left[\mu\left(\Lambda_{i j}-\frac{\delta_{i j} \vec{\nabla} \cdot \vec{V}}{3}\right)\right] \\
&=\left.\partial_{i} P-\mu \frac{\left(\partial_{i} v_{j}+\partial_{j} v_{i}\right]}{2}-\frac{\mu \delta_{i j}}{3} \vec{\nabla} \cdot \vec{v}\right] \\
&= 2 \nabla^{2} \vec{V}-\frac{\mu}{3} \partial_{i}(\vec{\nabla}-\vec{v}) \\
&= \rho_{i j}
\end{aligned}
$$

Arid Equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{\rho})=0 \\
& \text { (contiunity) }
\end{aligned}
$$

$$
\begin{aligned}
& \rho\left(\frac{\partial \varepsilon}{\partial t}+\vec{V} \cdot \vec{\nabla} \varepsilon\right)-\vec{\nabla} \cdot(\vec{K} \vec{\nabla} T)+\rho \vec{\nabla} \cdot \vec{V}=0 \text { (entergr) (supped) }
\end{aligned}
$$

(45) is called Navir.slones eqn (for constant μ)
These 5 equations constitute a dynamical theory:

$$
\vec{V}=3 \text { quantities }
$$

T, lippi, \mathcal{E} : quantities
bot $p \alpha \varepsilon$, and $p=n k T$ so we eliminate 2/7 quantities and are lett with 5 equations and 5 variables.

- Lan also devire the fluid equations from macroscopic stress consideration. I wont do that here.

Vorticity Equation \& incompressible flow
take curl of Nav. Stokes equation:

$$
\begin{align*}
& \vec{\omega}=\vec{\nabla} \times \vec{V} \Rightarrow \\
& \frac{\partial \vec{\omega}}{\partial t}+\vec{\nabla} \times(\vec{v} \cdot \nabla \vec{v})=-\nabla \times \frac{1}{\rho} \nabla \rho,+ \\
& \begin{array}{r}
\text { once } \vec{F}=-\vec{\nabla} \phi \\
\text { (conserve } \\
\nabla \times \vec{F}+(\vec{l}) \nabla^{2} \vec{\omega}
\end{array} \\
& \text { (conservative force) } \\
& \text { but }(\vec{V} \cdot \vec{\nabla} \vec{v})=\frac{1}{2} \vec{\nabla}(\vec{V} \cdot \vec{V})-\vec{V} \times(\underbrace{\vec{\nabla} \times \vec{v}}_{\vec{v}}) \\
& D=\text { constant } \\
& \text { assume } 1 \\
& \Rightarrow \frac{\partial \vec{w}}{\partial t}=\nabla \times(\vec{v} \times \vec{\omega})+\frac{1}{\rho^{2}} \vec{\nabla} \rho \times \overrightarrow{\nabla p}+\vec{\nu} \nabla^{2} \vec{w}+\underset{\text { ignore }}{\gamma} \tag{47}
\end{align*}
$$

now, consider an incompressible flow: in such a flow the density remains constant in space and time. The continuity equation then gives

$$
\frac{\partial \rho g^{0}}{\partial t}+\rho \vec{\nabla} \cdot \vec{v}+\vec{V} \cdot \overrightarrow{\nabla \rho}=0 \quad \Rightarrow \vec{\nabla} \cdot \vec{V}=0
$$

For incompressible flow:

$$
\begin{align*}
& \text { incompressible flow: } \tag{48}\\
& \frac{\partial \vec{w}}{\partial t}=\nabla \times(\vec{v} \times \vec{w})+\delta \nabla^{2} \vec{w}+\nabla \nabla()
\end{align*}
$$

compare to magnetic induction equation in incompressible MHD:

$$
\frac{\partial \vec{B}}{\partial t}=\vec{\nabla} \times(\vec{V} \times \vec{B})+\nu_{m} \nabla^{2} \vec{B}
$$

where ν_{m} is magnetic diffusivity. Note similarity between (48) and (44)!

The similarity of (48) \& (49) implies "deep" connections etween behavior of vorticity, or vortex lines and magnetic field lines in incompressible MHD.
move on incompressibility
when is flow incompressible?
We will later see that disturbances
in a fluid propagate at the sound speed, cs.
Thus in general, vales the agent
causing the disturbance moves faster han C_{g}, the density will smooth out on time scales short compared to the evolution of the quanties of internet \Rightarrow vystans with subsonic material velocities ore largely incompressible.

Note also that for barotropis flows, defined by $p=p(\rho)$, the third term of $(4 \neq)$ also vanishes. these Y年us can be compressible and still have same form as 4^{x} without that Brad term. More on these later.

For incompressible flow, energy equation is redundant:
since $\vec{\nabla} \cdot \vec{V}=0$; añ$d$ using $\vec{\nabla} \times \vec{V} \equiv \vec{\omega}$

$$
\partial_{t} \vec{w}=\vec{\nabla} \times \vec{V} \times \vec{w}+\nu \nabla^{2} \vec{w} \text { we can }
$$

fully solve for $\vec{\nabla}$. If a vector field's divergence and curl are known, then we can solve for vector field. Thus $\vec{\nabla} \cdot \vec{V}$ and (48) are enough to solve for \vec{V}. Once we have \vec{V}, we get ρ om (44) and p from (45). Thus (96) is never needed, since p and ε are related.

Thus energy -equation is not needed for incompressible flows.
\rightarrow This is not true when radiation is important.
\Rightarrow radiative transfer and energy equation are needed. extra terms in the energy equation correspunday to radiation sloes are required.
There is a formal analogy between $f(\vec{x}, \vec{u}, t))$
orectic intensity

Hydrostatic Equilibrium
Consider a fluid at rest, so that $\vec{v}=0$ then momentum equation with $\vec{v}=0$

$$
\begin{equation*}
\Rightarrow \quad \vec{F}=+\frac{1}{\rho} \vec{\nabla} p \tag{50}
\end{equation*}
$$

energy equation

$$
\begin{equation*}
\stackrel{\rightharpoonup}{\nabla} \cdot(\mathbb{K} \vec{\nabla} T)=0 \tag{51}
\end{equation*}
$$

Consider fluid in gravitational field in equilibrium $\vec{F}=-g \hat{e}_{z} \quad$ where \hat{e}_{z} is vertical direction
...e \hat{z} component of (50) then gives

$$
\begin{equation*}
-\rho g=\frac{\partial p}{\partial z} \tag{52}
\end{equation*}
$$

for incompressible flow this completely describes the system $\Rightarrow p=p_{0}-\rho g z$, where $p_{0}=p(z=0), \rho=$ constant and thus p increases as z decreases below 0 . for incompressible flow.

Now consider a compressible flow and consider the isotineral son to (51).

Since $p=\frac{k B}{m} g T$ (which we derived from Bultmaneqn).
For constant T, (52) gives

$$
\begin{align*}
& \frac{k_{B} T}{m} \frac{d \rho}{d z}=-\rho g \\
\Rightarrow & \rho=\rho_{0} \operatorname{Exp}\left[\frac{-m g z}{k_{B} T}\right], \rho_{0} \equiv \rho(0) \tag{53}
\end{align*}
$$

\Rightarrow density falls off exponentially in an isothermal atmosphere

Note that (50) is a finwamenal equation of Stellar structure. However (51) would have connection and radiative transport terms in addition to the conduction terms present here.
But consider now the solar corona rather than the solar interior

$$
\longrightarrow
$$

Solar corona
Coronal temperature is hotter than Solar surface by factor $\simeq 1000$.
Assume spherical symmetry as a Crude approximation. take boundary condition $T=T_{0}$ at base of corona $r=r_{0}$. (we will later discuss more about heating corona) Mass of corona is negligible so it is under gravitational influence of the sun.
in spherical geometry, hydrostatic equilib momention en

$$
\begin{equation*}
\Rightarrow \frac{d \rho}{d r}=-\frac{G(M)}{r^{2}} \rho=-\frac{G M}{r^{2}} \frac{(m p}{k_{B} T} \text { mass ob } \tag{54}
\end{equation*}
$$

energy equation:

$$
\begin{equation*}
\frac{d}{d r}\left(K r^{2} \frac{d T}{d r}\right)=0 \tag{55}
\end{equation*}
$$

$I=$ thermal conductivity $\propto T^{5 / 2}$ (derived later)
so $\quad\left(55^{5}\right) \Rightarrow$

$$
\begin{gather*}
r^{2} T^{5 / 2} \frac{d T}{d r}=\text { constant } \\
\Rightarrow T=T_{0}\left(\frac{r_{0}}{r}\right)^{2 / 7} \quad T(\infty)=0 \tag{56}\\
\quad T\left(r_{0}\right)
\end{gather*}
$$

Using this for T in (54)

$$
\Rightarrow \quad \frac{d p}{p}=-\frac{G M_{\theta} m d r}{r^{1 / 7} r_{0}^{2 / 7 h_{B}} T_{0}}
$$

Sole is

$$
\begin{equation*}
p=\rho_{0} \operatorname{Exp}\left[\frac{7}{5} \frac{G M m}{h_{B} T_{0} r_{0}}\left\{\left(\frac{r_{0}}{r}\right)^{5 / 7}-1\right)\right. \tag{57}
\end{equation*}
$$

where $p\left(r_{0}\right)=p_{0}$.
Note that at $r \rightarrow \infty \quad p \neq 0$!
No solution with both $T(\infty)$ AND $P(\infty)$ vanishing. significance is that hot solar corona can only be in equilibrium it there is a pressure at infinity to heep it from expanding. But since the pressure available is not enough, parker (1958) Used this argument to predict the solar wind! It was detected several years after the prediction!

Temperature dependence if EI, the
thermal conduction coefficient Quick derivation
$u=$ typical relative velocity between particles.
$r_{0} u_{u}=$ time during which particles are
close enough to mate "collision" by
coumb interaction. Then

$$
\therefore \frac{e^{2}}{r_{0}^{x}} \frac{P_{0}}{u}={\underset{m e}{ } \frac{\Delta p}{m}=\text { charge in momentum }=F \cdot \Delta t . \text { rom interaction }}^{\text {un d }}
$$

we set $\Delta p=p$ to define a "collision"
\Rightarrow for nomerelativistic electrons (elecmens conduct the

$$
r_{0}=\frac{e^{2}}{\left.m_{e} u^{2}\right)} \text { since } p=m_{e} n
$$

neat rather than ions
because electrons are more imbibe)
collision cross section is then $\pi r_{0}{ }^{2}$ and collision frequency is

$$
\Rightarrow V_{c}=\frac{\pi n e^{4}}{m_{e}^{1 / 2} k_{c}^{1 / 2} T^{3 / 2}}
$$

so collision time β
$T \approx \frac{1}{V_{c}}=\frac{\left(L_{b}+\right)^{3 / 2} m e^{\prime 2}}{\pi n e^{4}}$. Then from eqn (35) (page 34)

$$
\Rightarrow K \propto \tau T \propto T^{5 / 2}=\text {, } \operatorname{since} \tau \propto T^{3 / 2}
$$

$$
\begin{aligned}
& \left(\pi r_{0}^{2}\right)(n)(u)=\frac{\pi n e^{4}}{m_{e}^{2} u^{3}} \equiv \nu_{c} \\
& \text { use } u \text { ~ }\left(\frac{K_{L} T}{m_{e}}\right)^{1 / \alpha}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{5}{2} \pi\left(\frac{k_{k} \pi}{m}\right)
\end{aligned}
$$

Since $\left[\nabla \cdot[\Sigma \nabla T]=\left[\frac{\partial \varepsilon}{\partial t} \rho\right]\right.$

$$
\begin{aligned}
{[E] } & =\left[\frac{\text { length }}{\text { temp }} \cdot \frac{\text { energy }}{\text { time } \cdot \text { volume }}\right] \\
& =\frac{l^{2} \cdot m \cdot \frac{l^{2}}{t^{2}}=\frac{m l}{[T] t \cdot l^{3}}}{[T] t^{3}}
\end{aligned}
$$

Check whether explicit expression for Is has correct units.'

$$
\begin{aligned}
& {\left[\eta \tau \frac{K_{h}^{2} T}{m_{e}}\right]=\frac{t}{l^{3}} \frac{l^{4}}{t^{4}} \frac{m}{[T]}=\frac{m l}{[T] t^{3}}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { and }\left[n k_{6} T\right]=\left[\frac{\text { energy }}{\text { volume }}\right] \\
& \Rightarrow\left[\frac{\bar{k}}{n k_{b}}\right]=\frac{\text { liengh }^{2}}{\text { time }}=(\text { speed) (tenth suck) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { kinematic viscosity } \\
& \partial_{t} C=v \nabla^{2} C
\end{aligned}
$$

Bernouillis principle
Moving Beyond Hydrostatics. simple hydrodynamic problems involve steady flows. (time independat)

Define a streamline as the curve tangent to the velocity \vec{v} at artery point.
when a flow is steady, the streamlines trace the paths of all fluid parcels.
lets write $\vec{F}=-\nabla \phi$ (for conservative fere)
the Elev equation $(=\operatorname{eqn}(45)$ without the viscous term)
steady state, is:

$$
\begin{equation*}
\frac{\nabla\left(\frac{1}{2} v^{2}\right)-\vec{v} \times(\vec{\nabla} \times \vec{v})}{\vec{v} \cdot \vec{\nabla}}=\frac{-1}{\rho} \nabla \rho-\nabla \phi \tag{58}
\end{equation*}
$$

Integrate along sheamlive.

$$
\begin{align*}
& \text { Regrate along sheamline } \\
&\left.\int d \vec{l} \cdot\left[\vec{\nabla} \frac{1}{\rho}\left(u^{2}\right)-\vec{V} \times \overrightarrow{\vec{O}} \times \vec{v}\right)+\frac{1}{\rho} \overrightarrow{\nabla p}+\vec{\nabla} \phi\right]=0 \tag{59}\\
& \Rightarrow \int \frac{d P}{\rho}+\frac{1}{2} v^{2}+\phi=\text { constant }=\text { Bernouillis }
\end{align*}
$$

where the integral is along a streamline.
incompressible flaws, $\rho=$ constant
(59) becomes $\phi=g h$ for gravity

$$
\begin{equation*}
\frac{v^{2}}{\alpha}+\frac{p}{\rho}+g h=\text { constant } \tag{60}
\end{equation*}
$$

apply this to a tank with outlet:

consider a streamline that extends from air water interface at top of container to the nozzle.
$p=P_{0}$ both at top interface and just external to the nozzle we have from Bernoillis principle for incompressible flow:

$$
\begin{align*}
& \Rightarrow \frac{V_{\text {out }}}{2}=g\left(h_{2}-h_{1}\right)=g \Delta h \\
& \Rightarrow\left|V_{\text {out }}\right|=(2 g \Delta h)^{1 / 2} \tag{61}
\end{align*}
$$

Note this is independent of the nozzle's direction! (The subsequat evolution of flow after initial ejection will, however, depend on nozzle direction).

Bernouilli's theorem also implies that pressure drops when velocity of flow increases:
consider $\frac{\text { continuity equation for steady flow in pipe: }}{\text { Ara }}$

For constantidensity lincompressible) \& constant \vec{V} over the crass sectional area, this implies
$V_{1} A_{1}=V_{2} A_{2}$. Thus as A decreases
V_{1} increases: $\quad \frac{V_{2}}{V_{1}}=\frac{A_{1}}{A_{2}}>1 \Rightarrow$ velocity increases
Now from Bernouillis principle we have:

$$
\begin{aligned}
& \frac{V_{1}^{2}}{2}+\frac{P_{1}}{\rho}=\frac{V_{2}^{2}}{2}+\frac{P_{2}}{\rho} \\
& \Rightarrow P_{1}=\frac{\rho\left(V_{2}^{2}-V_{1}^{2}\right)}{2}+P_{2}>P_{2} \Rightarrow \text { pressure dec } \\
& P_{2}<P_{1}
\end{aligned}
$$

thus as flow is constricted in a pipe its velocity increases and pressure decreases.
By this reasoning, what haprens it you hold two pieces of paper parallel and try to separate them by blowing?

Note on Eulerian vS, Lagrangian Descriptions

- Eulerian! describes evolution of flow at fixed coordinates as flow passes through these lords: egg. $\rho(\vec{x}, t)$
- Lagrangian. describes evolution of flow comoung with fivid element e.9. $\rho(\vec{a}, t)$ where \vec{a} labels fluid element In Lagrangian description: $\vec{x}=\vec{x}(\vec{a}, t)$ so that \vec{x} and t are no longer independent variables (!) fluid
- Lagrangian derivative at time t "particle" is at position \vec{x}, t and at time $t+\Delta t$ "particle" is at position $\vec{x}+\Delta x$ \Rightarrow Lagrangian derivative of function $C(\vec{x}, t)$

$$
\frac{D \cdot((\vec{x}, t)}{D t}=\lim _{\Delta t \rightarrow 0} \frac{C(\vec{x}+\Delta \vec{x}, t+\Delta t)-C(\vec{x}, t)}{\Delta t}
$$

the numerator can be written:

$$
\begin{aligned}
& \text { the numerator can be written } \\
& C(\vec{x}, t+\Delta t)+C(\vec{x}+\Delta \vec{x}, t+\Delta t)-C(\vec{x}, t)-C(\vec{x}, t+\Delta t) \\
& \Rightarrow \frac{D C}{D t}(\vec{x}, t)=\lim _{\Delta t \rightarrow 0}\left(\frac{\partial C}{\partial t}(\vec{x}, t) \Delta t+\frac{\partial C(\vec{x}, t+\Delta t)}{\partial \vec{x}} \Delta \vec{x}\right) \\
& \\
& \text { since } \frac{\partial C}{\partial t}(\vec{x}, t+\Delta t)=\frac{\partial C}{\partial x}(\vec{x}, t)+\Delta t \partial^{2}\left(\overrightarrow{\partial^{2}}(\vec{x}, t)\right.
\end{aligned}
$$

since $\frac{\partial C}{\partial \vec{x}}(\vec{x}, t+\Delta t)=\frac{\partial c}{\partial x}(\vec{x}, t)+\Delta t \frac{\partial^{2}(\vec{x}, t)}{\partial \vec{x} \partial t}$ and order in smallitites

$$
\Rightarrow \frac{D C(\vec{x}, t)}{D t}=\frac{\partial C(\vec{x}, t)}{\partial t}+\underbrace{\begin{array}{c}
\text { Slow velocity } \\
\text { Derian } \\
\text { Derivative }
\end{array}}_{\begin{array}{c}
d \\
\text { Lagrangian } \\
\text { Derivative }
\end{array}}+\underbrace{\vec{v}(x, t) \cdot \vec{\nabla} C(\vec{x}, t)}_{\text {"convective derivative" }}
$$

$\left\{\begin{array}{l}\text { in nun-cartsian coords, if } C \text { is a } \\ \text { vector, care must be taken with }\end{array}\right.$ vector, care must be taken with terms like $\vec{V} \cdot \vec{\nabla} \vec{C}$; because unit vectors are not constant. Can look up components eq. $(\vec{V} \cdot \vec{\nabla} \vec{c})_{r},(\vec{V} \cdot \nabla \vec{c})_{\phi},(\vec{V} \cdot \vec{c})_{\theta}$ in soph. coords)
Lagrangian derivative is also called the "material" derivative

Kelun Circulation theorem (Helmholtz 1858; halon 1869)
For ileal barotropic or incompassible flow:

$$
\begin{align*}
& \partial_{t} \vec{\omega}=\nabla \times(\vec{v} \times \vec{\omega}) \text { a } \frac{\nabla \rho \times \nabla \vec{p}}{\rho^{2}} \tag{bd}\\
& \text { Define fix of vorticity }
\end{align*}
$$

Define flow of vorticity through a surface at time t_{0} and $t_{\text {, }}$ as

$$
\int_{s_{0}} \vec{w} \cdot \vec{s} \text { and } \int_{s_{1}} \vec{w} \cdot d \vec{s} \text {. I will }
$$

Show that $(G 2) \Rightarrow$ Kelvin circulation theorem:

$$
\begin{equation*}
\frac{D \Phi}{D t} \equiv \frac{D}{D t} \int \vec{w} \cdot d \vec{s}=0 \text { or } \int_{s_{0}} \vec{w} \cdot d \vec{s}=\int_{s_{r}} \vec{w} \cdot d \vec{s} \tag{63}
\end{equation*}
$$

The proof below also applies to the waguretic flux, as the induction equation has the same form as (62).]

Derivation of the time evolution of Flux
Let $\frac{D}{D t} \equiv \frac{\partial}{\partial t}+\vec{V} \cdot \vec{\nabla}$ be the material derivative
that follows the time evolution of a quantity as flue moves with velocity $\vec{V}(\vec{x}, t)$. For a vector \vec{A} any vector or pseredovector

$$
\begin{equation*}
\frac{D}{D t}\left(\int_{S} \vec{A} \cdot d \vec{S}\right)=\frac{D}{D t} \int_{S_{0}} \vec{A} \cdot \vec{J} d S_{0} \tag{A}
\end{equation*}
$$

where $d \vec{S}$ is a surface element on the surface that evolves as the result of the fluiamotion and: $d \vec{S}_{0}$ is surface element of a fixed control surface (e.g. at $t=0$.) Here \vec{F}^{5} is the Jacobian for the coordinate transformation.

$$
\begin{equation*}
J_{k \bar{j}} \varepsilon_{k i j} \frac{\partial x_{i}}{\partial \sigma_{1}} \frac{\partial X_{j}}{\partial \sigma_{2}}=J_{k} \tag{12}
\end{equation*}
$$

where $\sigma_{1} \sigma_{2}$ are local cartesian cordials \& the fixed surface element $d S_{0}$ and X_{1}, X_{2}, X_{3} are local cartesian coordinates of evolving surface element $d S$

$$
d s(x(t), y(t) z(t)) \rightarrow J_{n=3} d S_{3}
$$

Because the right side of (1) is an integral over a fixed surface, we con take the $\frac{D}{D t}$ inside the integral in (1):

$$
\begin{equation*}
\frac{D}{D t} \int_{S} \vec{A} \cdot d S=\frac{D}{D t} \int_{S_{0}} \vec{A} \cdot \vec{J} d S_{0}=\int\left(\vec{J} \cdot \frac{D \vec{A}}{D t}+\vec{A} \cdot \frac{D \vec{J}}{D t}\right) d S_{0} \tag{3}
\end{equation*}
$$

we need an expression for $\frac{D \vec{J}}{D t}$. On page (E4) I derive this explicitly. For the moment I just take the result:

$$
\begin{equation*}
\frac{D J_{q}}{D t}=I_{m}\left(\delta_{m q}(\vec{\nabla} \cdot \vec{V})-\partial_{q} V_{m}\right) \tag{F4}
\end{equation*}
$$

Using, (EY) and
$D A_{i}-\partial A_{i}+(\vec{V} \cdot \vec{D} \vec{A})$$\left[\begin{array}{l}\left(\vec{V} \cdot{ }_{i} t_{0}\right. \\ (\vec{V} \cdot \nabla \vec{A})_{i}=\vec{V} \cdot \vec{\nabla} A_{i} \\ \text { in cartesian }\end{array}\right.$

$$
\frac{D A_{i}}{D t}=\frac{\partial A_{i}}{\partial t}+(\vec{V} \cdot \stackrel{\rightharpoonup}{\nabla} \vec{A})_{i} \quad\left[\begin{array}{c}
\text { incartesison } \\
\text { cords } \tag{5}
\end{array}\right]
$$

in equation $\left(P_{3}\right)$, we obtain

$$
\begin{equation*}
\frac{D}{D t} \int_{S} \vec{A} \cdot d \bar{S}=\int[\frac{\left(\frac{\partial A_{i}}{\partial t}+(\vec{V} \cdot \vec{\nabla} \vec{A})_{i}\right) S_{i}}{(\hat{a})} \underbrace{A_{q} X_{m}\left(\delta_{m b}(\vec{V} \vec{V})-\partial_{q} V_{m} d S_{0}\right)}_{(b)} \tag{66}
\end{equation*}
$$

the contributions: (a) and (b) can be combined in equation (66) giving

$$
\frac{D}{D t} \int_{S} \vec{A} \cdot d \vec{S}=\int_{S_{0}}\left(\frac{\partial A_{i}}{\partial t}+{\underset{V}{V} \cdot \nabla A_{i}}_{t}+\underline{A_{i}} \vec{\nabla} \cdot \vec{V}-\vec{A} \cdot \nabla V_{i}\right) \underbrace{J_{i} d S_{0}}_{d S_{i}} \quad \text { (A) }
$$

since $T_{i} d S_{0}=d S_{i}$ we now have an integral over the moving surface in (F7).
In addition, we have the vector identity

$$
\begin{equation*}
\vec{\nabla} \times(\vec{V} \times \vec{A})=\vec{A} \cdot \nabla \vec{V}-\vec{V} \cdot \nabla \vec{A}-\vec{A}(\vec{\nabla} \cdot \vec{V})+\vec{V}(\nabla \cdot \vec{A}) \tag{18}
\end{equation*}
$$

Using $T_{i} d S_{0}=d S_{i}$ and (F) in (A), we have

$$
\begin{equation*}
\frac{D}{D t} \int_{S} \vec{A} \cdot d \vec{S}=\int_{S}\left[\left(\frac{\partial \vec{A}}{\partial t}-\nabla x(\vec{V} \times \vec{A})\right)+\vec{V}(\nabla \cdot \vec{A})\right] \cdot d \vec{S} \tag{Fq}
\end{equation*}
$$

thus if $\frac{\partial \vec{A}}{\partial t}=\nabla \times(\vec{V} \times \vec{A})$ AND $\nabla \cdot \vec{A}=0$, then

$$
\frac{D}{D t} \int_{S} \vec{A} \cdot d \vec{S}=0
$$

Derivation of $\frac{D \vec{J}}{D t}$ (needed in eqn (4))

$$
\begin{aligned}
& J_{k}=\varepsilon_{n i j} \frac{\partial x_{i}}{\partial \sigma_{1}} \frac{\partial x_{j}}{\partial \sigma_{j}} \\
& \frac{D J_{k}}{D t}=\varepsilon_{n_{i j}}\left(\left(\frac{\partial}{\partial \sigma_{1}} \frac{D x_{i}}{D t}\right) \frac{\partial x_{j}}{\partial \sigma_{2}}+\frac{\partial x_{i}}{\partial \sigma_{1}}\left(\frac{\partial}{\partial \sigma_{2}} \frac{D x_{j}}{D t}\right)\right)
\end{aligned}
$$

but $\frac{D X_{j}}{D t}=V_{j}$ and $\frac{D X_{i}}{D t}=V_{i}$

$$
\begin{align*}
\frac{D J_{k}}{D t} & =\varepsilon_{x_{i j}}\left(\frac{\partial V_{i}}{\partial \sigma_{1}} \frac{\partial x_{j}}{\partial \sigma_{2}}+\frac{\partial x_{i}}{\partial \sigma_{1}} \frac{\partial V_{j}}{\partial \sigma_{i}}\right) \tag{Ff}\\
& =\varepsilon_{k i j}\left(\frac{\partial V_{i}}{\partial x_{m}} \frac{\partial x_{m}}{\partial \sigma_{1}} \frac{\partial x_{j}}{\partial \sigma_{2}}+\frac{\partial x_{i}}{\partial \sigma_{1}} \frac{\partial V_{j}}{\partial x_{m}} \frac{\partial x_{m}}{\partial \sigma_{2}}\right)
\end{align*}
$$

Use antisymmeting of $\varepsilon_{k i j}$ in index interchange between to obtain:

$$
=\varepsilon_{x_{i j}} \frac{\partial{v_{i}}_{\partial}}{\partial x_{m}}\left(\frac{\partial x_{m}}{\partial \sigma_{1}} \frac{\partial x_{j}}{\partial \sigma_{2}}-\frac{\partial x_{i}}{\partial \sigma_{1}} \frac{\partial x_{m}}{\partial \sigma_{\alpha}}\right)
$$

now consider each component of (112):
the $\hat{x}_{1}, \hat{x}_{2}, \hat{x}_{3}$ compments of (12) obtained
by setting $k=$ to 1,2 , and 3 respectively: and using $\varepsilon_{n i j}=-\varepsilon_{k j i}$ along with the fact that Eijn vanishes when any two indices are the same. Thus:

$$
\frac{\partial_{1}}{D t}=\frac{\partial V_{2}}{\partial x_{q}}\left(\frac{\partial x_{q}}{\partial \sigma_{1}} \frac{\partial x_{3}}{\partial \sigma_{2}}-\frac{\partial x_{q}}{\partial \sigma_{2}} \frac{\partial x_{3}}{\partial \sigma_{1}}\right)-\frac{\partial V_{3}}{\partial x_{q}}\left(\frac{\partial x_{q}}{\partial \sigma_{1}} \frac{\partial x_{2}}{\partial \sigma_{2}}-\frac{\partial x_{4}}{\partial \sigma_{2}} \frac{\partial x_{2}}{\partial \sigma_{1}}\right)(f 13)
$$

- though q indices are summed, $q=3$ dies not contribute to first term and $q=2$ does not contribute to second term.
- recognize that $\frac{\partial x_{1}}{\partial \sigma_{1}} \frac{\partial x_{3}}{\partial \sigma_{2}}-\frac{\partial x_{1}}{\partial \sigma_{2}} \frac{\partial x_{3}}{\partial \sigma_{1}}=-J_{2}$
using the equations of $(F \mid 4),(F 13)=7$,

$$
\begin{aligned}
\frac{D J_{1}}{D t} & =-\frac{\partial V_{2}}{\partial x_{1}} J_{2} \\
& =\frac{\partial V_{2}}{\partial x_{2}} J_{1}-\frac{\partial V_{3} J_{3}}{\partial x_{1}}+\frac{\partial V_{3}}{\partial x_{3}} J_{1}+\frac{\partial V_{1}}{\partial x_{1}} J_{1}-\frac{\partial V_{1}}{\partial x_{1}} J_{1} \\
& =\left(F V_{V}\right) J_{1}-\vec{J} \cdot \frac{\partial \vec{V}}{\partial x_{1}}
\end{aligned}
$$

analogously to (13) we have

$$
\begin{align*}
\frac{D S_{2}}{D t}= & \frac{\partial V_{3}}{\partial x_{9}}\left(\frac{\partial x_{6}}{\partial S_{1}} \frac{\partial x_{1}}{\partial S_{2}}-\frac{\partial x_{8}}{\partial S_{2}} \frac{\partial x_{1}}{\partial S_{1}}\right) \\
& -\frac{\partial V_{1}}{\partial x_{q}}\left(\frac{\partial x_{8}}{\partial S_{1}} \frac{\partial x_{3}}{\partial S_{2}}-\frac{\partial x_{q}}{\partial S_{2}} \frac{\partial x_{3}}{\partial S_{1}}\right)
\end{align*}
$$

similarly to the treatment below (A3), using (F14) this reduces to:

$$
\begin{align*}
\frac{D J_{2}}{\overrightarrow{D t}} & =-\frac{\partial V_{3}}{\partial x_{2}} J_{3}+\frac{\partial V_{3}}{\partial x_{3}} J_{2}+\frac{\partial V_{1}}{\partial x_{1}} J_{2}-\frac{\partial V_{1}}{\partial x_{2}} J_{1} \tag{H77}\\
& =(\nabla \cdot \vec{v}) J_{2}-\vec{J} \cdot \frac{\partial \vec{v}}{\partial x_{2}}
\end{align*}
$$

Finally we have:

$$
\begin{align*}
\frac{D J_{3}}{D t} & =\frac{\partial V_{1}}{\partial x_{q}}\left(\frac{\partial x_{q}}{\partial s_{1}} \frac{\partial x_{2}}{\partial s_{2}}-\frac{\partial x_{q}}{\partial s_{2}} \frac{\partial x_{2}}{\partial s_{1}}\right)-\frac{\partial V_{2}}{\partial x_{q}}\left(\frac{\partial x_{2}}{\partial s_{1}} \frac{\partial x_{1}}{\partial s_{2}}-\frac{\partial x_{4}}{\partial s_{1}} \frac{\partial x_{1}}{\partial s_{1}}\right) \\
& =\frac{\partial V_{1}}{\partial x_{1}} J_{3}-\frac{\partial V_{1}}{\partial x_{1}}-\frac{\partial V_{2}}{\partial x_{2}} J_{3}-\frac{\partial V_{2}}{\partial x_{3}} J_{2} \\
& =(\vec{\nabla} \cdot \vec{v}) J_{3}-\vec{J} \cdot \frac{\partial \vec{v}}{\partial x_{3}} \tag{5,8}
\end{align*}
$$

Combining (Fils), $1[17) \$(-18):$

$$
\begin{aligned}
\frac{D J_{q}}{D t} & =(\nabla \cdot \vec{V}) J_{q}-\vec{J}_{m} \nabla_{q} \vec{V}_{m} \\
& =J_{m}\left(\delta_{m \dot{q}}(\vec{\nabla} \cdot \vec{V})-\partial_{q} V_{m}\right)
\end{aligned}
$$

which is eqn (4)

So eqn ($F q$) shows that only when
$\nabla \cdot \vec{A}=0 \quad A N D \quad \frac{\partial \vec{A}}{\partial t}-\nabla \times(\vec{V} \times \vec{A})=0$ does
The material derivative of flex transport
hold. When $\vec{A}=\vec{\omega}$ this is the
Velum circulation theorem for vorticity lines.
when $\vec{A}=\vec{B}$ this is Alfred, theorem
when $\vec{A}=\vec{B}$ this is Alfven,
(though not his proof) Note $\vec{\nabla} \cdot \vec{W}=0$ is automatically
Satified
consider the case when $\vec{\nabla} \cdot \vec{A} \neq 0$. This
means a source of monopoles: (eg if $\vec{A}=\vec{B}$) the magnetic monopole density would be proportional to $\nabla \cdot \vec{B}$ (byanulogy to $\vec{\nabla} \cdot \vec{E}$ for elechic charge). If we set $\vec{A}=\vec{B}$ in $F 9$, and take advantage of the induction equation $\frac{\partial \vec{B}}{\partial t}=\vec{\nabla} \times \vec{V} \times \vec{B}$, then

$$
\frac{D}{D t} \int \vec{B} \cdot d S=\int_{\text {like an advection }}^{\int \vec{V}(\vec{D} \cdot \vec{B})} d \vec{S}
$$

tithe an advection of magnetic charge
(there is wore to be said about the inkerpertation of F2D, we will discuss'..)

Analogy between vorticity \& B-field
Maxwells equations:

$$
\begin{gather*}
\frac{1}{c} \frac{\partial \vec{B}}{\partial t}+\vec{\nabla} \times \vec{E}=0 \tag{70}\\
\frac{1}{c} \frac{\partial \vec{E}}{\partial t}+\vec{\nabla} \times \vec{B}=\frac{4 \pi \vec{J}}{C} \tag{71}\\
\nabla \cdot \vec{E}=4 \pi \rho \tag{72}\\
\nabla \cdot \vec{B}=0 \tag{73}
\end{gather*}
$$

Ohm's Law:
results from subtracting momention equations for positive and negative charges. That is one integrates Bultewann equation for " t " and " "ctorges in presence of Electromagnetic force. The result

these plasma terms are "usually" small for "colder denser" plasmas oI askoplysios",
(Withy Ohm's law in (70): they are important for fab "hot dituse

$$
\begin{align*}
\Rightarrow \frac{\partial \vec{B}}{\partial t} & =\nabla \times(\vec{V} \times \vec{B})-\eta \nabla \times J \tag{75}\\
& \simeq \vec{\nabla} \times(\vec{V} \times \vec{B}) \quad \text { for } \quad \eta=0
\end{align*}
$$

thus
$\frac{\partial \vec{B}}{\partial t}=\vec{\nabla} \times(\vec{V} \times \vec{B})$ in ideal $M H D$
So that $\frac{D}{D E} \int \vec{B} \cdot d \vec{S}=0 \quad$ by analogy to the ideal circulation theorem.
This is flux freezing since $\int \vec{B} \cdot d S=\varnothing$ is magnetic flux. The interpretation for magnetic flux freezing is identical to vortex line freezing: As we Follow fluid elements that consitule a surface S_{1} at t_{1} as they evolve to surface S_{2} at t_{2}, \ldots the normal component of vorticity or magnetic Field adjusts to conserve
the respective fluxes. Egg.
How far can
 one take the analogy between vorticity and magnetic field?
Topic of discussion...

Potential Flows: flow past cylinder
licompressible ideal flow with no vorticity at any time will remain non~vortical:

$$
\vec{\nabla} \times \vec{V}=0 \quad \Rightarrow \quad \vec{v}=-\nabla \phi_{\substack{\text { Tvelocity } \\ \text { potential }}}
$$

$$
\vec{\nabla} \cdot \vec{V}=0 \Rightarrow \nabla^{2} \phi=0
$$

- normal component ob \vec{V} at a fixed Solid boundary vanishes: \Rightarrow ?

$$
V_{\hat{n}}=-\hat{n} \cdot \nabla \phi=0
$$

- Example of flow past a cylinder: Assume flow is Uniform far away from cylinder

$$
\begin{aligned}
& \vec{u}=-v_{x} \hat{x} \\
& \underset{E}{E}
\end{aligned}
$$

$$
\vec{v}=-v_{x} \hat{x}
$$

solve for flow around cylinder assuming ideal (no viscosity)

- Equation Cl at the scrfaceboundory is

$$
V_{n}(a)=\left.\frac{-\partial \phi}{\partial r}\right|_{r=a} \quad \text { at } \quad r=a \quad \begin{gathered}
(c y \text { indrical } \\
\text { cords })
\end{gathered}
$$

- at $r \rightarrow \infty$ boundary condition is

$$
\begin{aligned}
& \left.\hat{V}\right|_{r \rightarrow \infty}=-U \hat{x}=-U \cos \theta \hat{r}+U \sin \theta \hat{\theta} \\
& \Rightarrow \quad=-\vec{\nabla} \phi \Rightarrow \quad \phi=U r \sin \theta \text { as } r \rightarrow \infty
\end{aligned}
$$

- General solution of Laplaces equation in 2-0 cyl cindrical coords!

$$
\begin{aligned}
& \phi=\left(A_{0}+B_{0} \ln r\right)\left(C_{0}+D_{0} \theta\right)+\sum_{n=1}^{\infty}\left(A_{n} r^{n}+\frac{B_{n}}{r^{n}}\right)\left(C_{n} \cos n \theta+D_{n} \sin n \theta\right) \\
& A_{n}, B_{n}, C_{n}, D_{n} \text { are constants }
\end{aligned}
$$

$A_{n}, B_{n}, C_{n}, D_{n}$ are constants
to satisfy above boundary cond at $r \rightarrow \infty$: $\Rightarrow A_{0}=B_{0}=C_{0}=D_{0}=0=C_{n \geqslant 1}$ and only $A_{1} \& B_{1}$ contilike

$$
=\phi=\left(A_{1} r+\frac{B_{1}}{r}\right) D_{1} \cos \theta
$$

at $r \rightarrow \infty$

$$
\underset{\substack{\operatorname{at} \\ \text { must } \\ \text { have }}}{ } \phi=U r \cos \theta \Rightarrow A_{1} D_{1}=U
$$

$$
\begin{aligned}
\text { at } & r \rightarrow a \\
& \left.\partial_{r} \phi\right|_{a}=0 \Rightarrow A_{1}-\frac{B_{1}}{a^{2}}=0 \\
\Rightarrow & \phi=\left(A_{1} r+\frac{a^{2} A_{1}}{r}\right) D_{1} \cos \theta=a^{2} A_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \vec{V}=-\vec{\nabla} \phi \\
& =-U \hat{x}+U \frac{a^{2}}{r^{2}}(\cos \theta \hat{r}+\sin \theta \hat{\theta})
\end{aligned}
$$

in rest frame of asymptotic flow, the flow around the cylinder is

$$
\begin{equation*}
\vec{V}^{\prime}=\bigcup \frac{a^{2}}{r^{2}}(\cos \theta \hat{r}+\sin \theta \hat{\theta}) \tag{ca}
\end{equation*}
$$

- Kinetic energy in a fluid layer of unit thichness parallel to cylinder axis is $K_{\text {fluid }}=\frac{1}{2} \rho \int_{0} \int_{\alpha}^{\infty}\left(v^{\prime}\right)^{2} 2 \pi r d r d t$

$$
\begin{aligned}
& \begin{array}{l}
=\frac{1}{2} \rho \int_{a}^{\infty} V^{1^{2}} \frac{2 \pi r d r}{\infty}=-\left.\frac{1}{2} r^{2}\right|_{a} ^{\infty} \\
=\pi \rho V^{2} a^{4}\left(\int_{a}^{\infty} \frac{1}{r^{3}} d r\right)
\end{array} \\
& \text { from (ca) }=\pi \rho V^{2} \alpha^{4}\left(\int_{a}^{\infty} \frac{1}{r^{3}} d r r^{\prime} \frac{1}{2} r^{2} l q\right. \\
& E_{\text {fruit }}=\frac{1}{2} \pi \rho U^{2} a^{\alpha}=\frac{1}{2} M^{\prime} U^{2} \\
& =\frac{1}{I} \rho V^{2}\left(\pi a^{2}\right)(1) \\
& \begin{array}{c}
\text { vertical } \\
\text { thichnes }
\end{array} \\
& =\text { muss of fluid } \\
& \text { displaced per } \\
& \begin{array}{l}
\text { unit length of } \\
\text { cylinder }
\end{array} \\
& \text { cylinder }
\end{aligned}
$$

Cylinder mass $=M$ so total kinetic energy of cylinder plus displaced mass is:

$$
\frac{1}{2}\left(M+M^{\prime}\right) U^{2}=E_{t o t}
$$

$$
\Rightarrow \frac{d E_{\text {rot }}}{d t}=\underbrace{\left(M+M^{\prime}\right)}_{\text {effective }} \frac{d \vec{V}}{d t} \cdot \vec{V}=\underbrace{(\underbrace{2}}_{\left.\begin{array}{c}
\text { cate of work done } \\
\vec{F} \cdot \vec{U}
\end{array}\right)}
$$

effective rate of work done by force acting on cylinder
but if $\underset{U}{U}=$ constant $\frac{\nu}{e^{2}} V$ then $\vec{F}=0 \Rightarrow$ no force When \vec{U} is uniform; our Solution that allowed $\vec{\cup}$ to be uniform is a system without viscosity; no viscosity means no drag, but drag is very important in real systems, and comes from viscosity in a boundary layer, and for small but finite viscosity this layer will thin but finite

Stream function, ψ, for incompressible flow

$$
\begin{array}{rlc}
\vec{\nabla} \cdot \vec{v}=0 & \Rightarrow \vec{V}=-\vec{\nabla} \times[\psi(x, y) \hat{z}] & \text { for } 2-D \\
& \text { or } V_{i}=-\varepsilon_{i j} \partial_{j} \psi(x, y) & \text { flow } \\
& \Rightarrow V_{x}=-\partial_{y} \psi(x, y) & \text { (1) } \\
& V_{y}=+\partial_{x} \psi(x, y) & \text { (2) } \tag{2}
\end{array}
$$

show ψ is constant on streamlines!. streamline is defined as $\frac{d y}{d x}=\frac{V_{y}}{V_{x}}$

$$
\Rightarrow V_{y} d x-V_{x} d y=0
$$

from (1) \&(2) $=\frac{\partial \psi}{\partial x} d x+\frac{\partial \psi}{\partial y} d y=0$
$=2 d \psi=0$ on stream lines

- If flow is also irrotational then
$\nabla \times \vec{v}=0$ and $\vec{V}=-\nabla \phi ; \quad v_{x}=-\partial x \phi(x, y)$
since $V_{x} \perp V_{y}$:

$$
\begin{aligned}
& \text { ne } v_{x} \perp v_{y} \\
& \underbrace{-\partial_{y} \psi}_{v_{x}} \text { from (1) is } \perp \underbrace{-\partial_{y} \phi(x, y)}_{V_{y}} \\
& +\underbrace{\partial_{x} \psi}_{V_{y}} \text { from }(z) \text { is } \perp+\underbrace{\partial_{x} \phi(x, y)}_{v_{x}}
\end{aligned}
$$

$\Rightarrow \nabla \psi \cdot \nabla \phi=0 ; \phi$ and ψ are orthogonal functions

Viscous flows.
Ideal fluids 'are assumed to have no viscosity. This means that $p_{i j}=p \delta_{i j}+\frac{t_{i j}}{0}$ and that the forces on a fluid surface are normal to that surface.
Force density $\alpha-\nabla_{i} p_{i j}$ so jth component of force is. $F_{j} \alpha \int \nabla_{i} P_{i j} d V=\int P_{i j} d S_{i}$
lat if $\pi_{i j}=0$, then $F_{j} \alpha \int P d S_{j}$
So, that force points 1 to the surface is since vector area has direction \perp surface.

But this violates our common experience: moving your hand through water you feel a V"drag" force which is a force between different layers in a fluid, not a normal force. Thus $\pi_{i j}$ cannot in - neral be zero. We showed earlier that the fluid momentum equation
with viscosity can be written

$$
\begin{equation*}
\frac{\partial \vec{V}}{\partial t}+\vec{V}-\nabla \vec{v}=\vec{F}-\frac{1}{\rho} \nabla \rho+\nu \nabla^{2} v \tag{76}
\end{equation*}
$$

Where $\nu \equiv \frac{\mu}{\rho}$ and we have ignored both spatial dependence of D and $\nabla \cdot v$ term in $\pi_{i j}$.
Recall) that the Navies- Stones equation (reduces to Euler equation with $\nu=0) \nabla$ is the kinematic viscosity.

The presence of the V term means that vorticity is no longer conserved:
faking curl of $(76) \Rightarrow$

$$
\begin{aligned}
& \frac{\partial \vec{w}}{\partial t}=\nabla \times(\vec{u} \times \vec{w})+\frac{\nabla \nabla^{2} \vec{w}}{\longrightarrow} \text { allows vor } \\
& \binom{\text { similarly non-ideal MHD }}{\frac{\partial B}{\partial}=\nabla x(\vec{v} \times \vec{B})+\nabla_{M} \nabla^{2} \vec{B}}
\end{aligned}
$$

$$
\nabla^{\nabla^{2} \vec{B}} \text { allows magnetic dissipation }
$$

$$
V_{\text {in }}>V_{\text {out }}
$$

by keplerian

$$
V=\left(\frac{G M}{r}\right)^{l_{2}}
$$

formula

$$
v\left(\rho_{1}\right)>v\left(r_{2}\right)
$$

Viscous flow through pipe
Consider steady flow of incompressible viscous fluid through pipe of circular cross section.

cylindrical words
$P_{2}-P_{1}=\Delta \rho$ pressure drives the flow $\frac{\partial f}{\partial t}+V \cdot x \rho+\rho D / r=0$
For incompressible flow, V should not depend $\rho D-v=0$ on : $\quad \rho V A=$ constant, where A is $: \int \rho V \cdot d S=0$ cross sectional area. $\Rightarrow V=$ constant for ρ, A constant. I Thus we have $V_{z}=V_{z}(r)$

From steady Nav. Stokes equ:

$$
\begin{aligned}
-\nabla p= & \vec{V} \cdot \vec{V} \vec{V}+\mu \nabla^{2} \vec{V} \\
& \left(\vec{V} V_{z} \partial_{t} V_{t}=0\right) \\
\Rightarrow \quad-\frac{\Delta p}{l} & =\mu \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right) \quad \text { in cylindiric. }
\end{aligned}
$$

and order equation so we need 2 boundary conditions \rightarrow

First boundary condition is that $V_{z}=0$ at wall of pipe. For pipe of radius $a, \quad v=0$ at $r=a$

Second boundary condition is that $v(r)$ profile is symmetric and smooth around $r=0$

$$
\Rightarrow \quad \frac{d V}{d r}=0 \text { at } r=0 .
$$

integrating (77) with the two bdry conds

$$
\begin{aligned}
& \text { Integrating } \\
& \text { integrate } \\
& \text { one }
\end{aligned}-\frac{\Delta p}{2 l} r^{\neq}=\mu \not y^{\prime} \frac{d V}{d r}+\not f_{1}^{0} \text { since } \frac{d V}{d r}=0 \text { at roo }
$$

integrate.

$$
\begin{gathered}
\text { ategrate } \\
\text { again: }
\end{gathered} \frac{-\Delta P r^{2}}{4 \ell \mu}+C_{2}=V
$$

$$
C_{2}=\frac{a^{2} \Delta \rho}{4 \mu l}=>
$$

$$
V(r)=\frac{\Delta p}{4 M l}\left(a^{2}-r^{2}\right) \quad(78)
$$

the velocity profile is parabolic!

Mass flux through pipe is given by

$$
\begin{align*}
& Q_{m}=\int_{0}^{a} \rho v(r) \cdot 2 \pi r d r, \quad u \operatorname{sing}(78) \\
& \Rightarrow Q_{m}=\frac{\pi \Delta p}{8 \Delta l} a^{4}=\rho \frac{\pi}{2} \frac{\Delta p}{\mu l} \int_{0}^{a}\left(a^{2} r-r^{3}\right) \tag{79}\\
&=\rho \frac{\pi}{2} \frac{\Delta p}{\mu l}\left(\frac{1}{4} a^{4}\right)
\end{align*}
$$

where $\nu=\frac{\mu}{\rho}$
(79) is Poiseville's formula and can be used to measure viscosity of liquids!:
(1) measure Δp (2) measure Q (3) l, a are known from pipe shape. (1), (2), (3) imply viscosity can be measured.

The parabolic shape just described is valid for laminar flows which occur at relatively slow velocities but not valid for turbulent flows which occur at larger velocities. The sense of large" and "small" needs to be made precise \longrightarrow

Comment on resistivity vs viscosity
when Boltzmann equation is integrate separately over electrons and ions for a plasma, one obtains the "two fluid" approximation to plasma plygsics. When collisions are included, an additional collisional integral mist be included for ion-electron collisions:
egg. $\frac{D f_{e}}{D t}=($ electron-lechon collision terms) + (inn-electen

The ion-electan collision. terms cause a dray m respect to the ions on elections as electrons move with resistive damping) and thus represent the sour B_{a} + me ne v_{e} be the bulk flow, velocity

Roughly, in a steady slate, subtracting the electron velocity fluid equation from that for the ions gives, after, some algebra'

$$
\begin{aligned}
& \underbrace{e\left(\vec{E}+\frac{V}{C} \times \vec{B}\right)}_{\text {electamagretic }}+\underbrace{m_{e} D_{e i} V_{e}-m_{p} V_{i e} V_{i}}_{\text {drag force }}=0 \\
& \text { Pectomaguctio }
\end{aligned}
$$

(r vi) farce
$D_{e i}$ is frequent y withehich electrons encounter
 peacerny with which ions encounter

$$
V_{i e}=\frac{m_{e}}{m_{p}} V_{e_{1}} \quad \underset{\substack{\text { elebencenge } \\ \text { spece }}}{ }
$$

outer impat madios Dehye leng th (noves (iva)
where $V_{e i}=n_{e} \sigma_{e i}$ Uthee
and $\sigma_{e i}=\frac{1}{2 \pi}\left(\frac{e^{2}}{u_{m_{2}, m_{c}}^{2}}\right)^{2} \ln \left(\frac{\lambda_{D}}{b_{\pi / 2}}\right)$ sange shide
(see next paye for estimute ob
so thin (rul) beciomes
$K \underset{\substack{\text { inner imeact } \\ \text { ribius }}}{\text { (rud }}$ by $\mathrm{H} / 2$

$$
e\left(E+\frac{v}{l} \times B\right)=+m_{e} n_{e} \sigma_{e i}\left(V_{i}-V_{e}\right) u_{+h_{j} e}
$$

since definition of current densily is

$$
J=t n_{e}\left(V_{i}-V_{e}\right)
$$

$$
(r v 3) \Rightarrow
$$

$$
\begin{align*}
& (E+V / c \times B)=\underbrace{\frac{m_{e} \sigma_{e} \cdot U_{m_{2}}}{e^{2}} J} \\
& \text { resistivity } \\
& \Rightarrow \eta=\frac{m_{e} u_{t h n}}{e^{2}} \frac{1}{2 \pi}\left(\frac{e^{2}}{u_{t h, e} m_{e}}\right)^{2} \ln \left(\frac{\lambda_{p}}{b_{\frac{1}{2}}^{2}}\right) \\
& =\frac{e^{2}}{2 \pi u_{+h_{c}^{3}}^{3} m_{e}} \ln \left(\frac{\lambda_{D}}{b+/ 2}\right)
\end{align*}
$$

"Spitzer" resistivity

$$
\Delta P_{e}=m_{e} \Delta u_{e} \approx \frac{z e^{2}}{b^{2}} \cdot \frac{\underbrace{}_{\text {Force }}}{u_{e}}=\underbrace{\substack{\text { change } \\ \text { per encounter }}}_{\text {time ob encounter }}
$$

The rate of collisions with impact parameters between b \& bib fer an electron with ion number density $n_{i}=n_{e}$ is

$$
n_{e} u_{e} \underbrace{2 \pi b d b}=n u_{e} d \sigma=\frac{d \nu_{e i}}{d \sigma} d \sigma=d v_{e i}
$$

$\Rightarrow \quad$ area of annulus of width $d b$

$$
\begin{aligned}
& \Rightarrow \\
& \text { average: } \Delta P \eta_{e} u_{e} 2 \pi b d b \simeq m_{e} u_{e} d \nu_{e i}=d F \\
& \text { force }
\end{aligned}
$$

Using (mi), setting $A P=m_{e l l}$ and integrating:

$$
\begin{aligned}
& \Rightarrow \int d F=\frac{n_{e} z^{2} e^{4}}{m_{e} u_{e}^{2}} \int_{b_{\min }}^{b_{\max }} \frac{1}{b^{2}} d \pi b d b \approx m_{e} u_{e} \cdot v_{e i} \\
& =m_{e} u_{e}^{2} n \sigma_{e i} \\
& =\frac{n_{e} z^{2} e^{4}}{m_{e} u_{e}^{2}} \ln \left(\frac{b_{\max }}{b_{\min }}\right) \approx m_{e} u_{e}^{2} n_{e} \sigma_{e i} \\
& =>\sigma_{e i} \alpha \frac{z^{2} e^{4}}{m_{e}^{2} u_{e}^{4}} \ln \left(\frac{b \max }{b_{m i n}}\right)
\end{aligned}
$$

So Ohm's law is:

$$
(r v 5)
$$

Induction equation

$$
\begin{aligned}
\frac{\partial \vec{B}}{\partial t} & =-c \vec{\nabla} \times \vec{E} ; \quad \vec{E}=-\vec{V} \times \vec{B}+\eta \vec{J} \\
& \Rightarrow \\
\frac{\partial \vec{B}}{\partial t} & =\vec{\nabla} \times(\vec{V} \times \vec{B})-c \vec{\nabla} \times \eta \vec{J}
\end{aligned}
$$

from ohm's
law

$$
s(r v 6)
$$

but $\vec{J}=\frac{c \vec{\nabla} \times \vec{B}}{4 \pi}$ so $(r \vee 6) \Rightarrow$

$$
\nabla \times B=\frac{4 \pi J}{c} \text { (now }
$$

relations

$$
\begin{aligned}
& \frac{\partial \vec{B}}{\partial t}=\nabla \times(\vec{V} \times \vec{B})-\frac{c^{2}}{4 \pi} \vec{\nabla} \times n(\vec{D} \times \vec{B}) \\
& \frac{\text { for }}{}=\eta=\text { constant, and using } \int \vec{\nabla} \cdot \vec{B} \\
& \frac{\partial \vec{B}}{\partial t}=\vec{\nabla} \times(\vec{v} \times \vec{B})+\frac{n c^{2}}{4 \pi} \nabla^{2} \vec{B} \\
& \text { take cor l } \\
& \text { en } \\
& V_{m}=\text { magnetic }
\end{aligned}
$$

$\vec{\nabla} \cdot \vec{B}=0,(r v 7)=7$
MHD
Induction $(r v 8)$
diffusivity

$$
\Rightarrow \frac{\partial \vec{J}}{\partial t}=\vec{\nabla} \times(\vec{\nabla} \times(\vec{v} \times \vec{B}))+\underset{q}{\nu_{m} \nabla^{2} \vec{J}} \quad(r v q) \text { dissipation term fer } \vec{J} \text {. }
$$

dissipation term fer \mathcal{J}
In has units of $\frac{(l e n g t h)^{2} \text { just like viscosity } v}{T \text { one }}$

$$
\left[l^{2} / t\right]=[v l]
$$

remember that. from above, magnetic diffusely

$$
V_{m}=\frac{n c^{2}}{4 \pi} \sim \frac{c^{2} e^{2}}{8 \pi^{2} u_{h_{e}}^{3} m_{e}} \sim \frac{\sigma_{e i} u_{+h_{e}} m_{e} c^{2}}{e^{2}}
$$

whereas:
viscosity
in fluid

$$
\begin{aligned}
& \text { hemal velocity } \\
& \text { of ions (since they }
\end{aligned}
$$

maventom
equation

So ν_{m} and ν
must both have units of $\frac{e^{2}}{t}=\left[\begin{array}{ll}\mathrm{l} &]\end{array}\right.$ and thus the product of t some velocity and length scale.
$J \backsim U_{\text {th ,i }}$. $\lambda_{m f p}$, but what about ν_{m} ?

$$
\begin{aligned}
V_{m}=\frac{\eta c^{2}}{4 \pi} \sim \frac{c^{2} e^{2}}{8 \pi^{2} u_{m e}^{3} m_{e}} & \sim \sqrt{2 \pi} \frac{c^{2} \sigma_{e i}^{1 / 2}}{4 \pi} u_{t h} \\
& \approx c \cdot \frac{c \sigma_{e i}^{1 / 2}}{u_{+n}}
\end{aligned}
$$

$$
c \cdot \underbrace{\frac{\sigma_{e i}^{1 / 2}}{u_{t h, e}}}
$$

time for
electra to cross ion elector coss section
distance light travels in time for e^{-}to cross ion-e-cross section
viscosity is dominated by ion motion (Iva BUT thermal diffusivity and resistivity are dominated by electrons; can relate the

$$
\begin{aligned}
& \text { latter two: } \\
& K_{\text {in }} \approx \lambda_{e, m f p} U_{t h, e} \propto \frac{U_{t h, e}}{n_{i} \sigma_{e j}} \propto U_{e, t h}^{5} \propto T_{e}^{5 / 2} \\
& \nu_{m} \approx C \cdot \frac{\left(\sigma_{i e}\right)^{1 / 2}}{U_{t h, e}} \propto \frac{1}{U_{t h, e}^{3}} \propto T_{e}^{-3 l_{2}} \\
& \Rightarrow K_{t h} \cdot v_{m} \sim T_{e}
\end{aligned}
$$

Wiedemann - Franz Scaling

Note on Diffusion Equation:
egg.
$\partial_{t} \vec{V}=\nu \nabla^{2} \vec{V} \quad$ why is this
a "diffusion" equation?
Suppose $\vec{V}=\vec{q}(t) e^{i k_{*} x}$
$\Rightarrow \frac{\partial \vec{V}}{\partial t}=-\nu k_{x}^{2} \vec{V}$, consider e.g. \hat{y} component

$$
\begin{array}{ll}
\Rightarrow \ln V_{y} & =-\nu R^{2} t+C \\
\Rightarrow V_{y} & =\underbrace{V_{y}[\theta] e^{-\nu k_{x}^{2} t}}=e^{-t / \tau}
\end{array}
$$

exponential decay $\tau=\frac{1}{k_{x}^{2} U}$ of initial pattern $=\frac{L^{2}}{U}$

viscous flows,
Reynolds number, and dimesimeses scaling relations
Can a model of a plane or car or asthphysial jet scaled down to "table top" size appropriately model the dynamics of the real thing? power of dimensionless numbers
consider object of size L velocity U thus characteristic time is $\simeq L / V$
let $X^{\prime}, V^{\prime}, t^{\prime}, w^{\prime}$ be dimensionless units notarized to these values. Then:

$$
\begin{align*}
& \text { these values. Then. } \tag{80}\\
& x=x^{\prime} L, \quad v=v^{\prime} U, \quad t=t^{\prime} \frac{L}{U}, w=w^{\prime} \frac{U}{L} \\
& (80)
\end{align*}
$$

recall that for incompressible flows

$$
\begin{align*}
& \frac{\partial \vec{\omega}}{\partial t}=\vec{\nabla} \times(\vec{v} \times \vec{\omega})+\vec{\nabla}^{2} \vec{\omega} \text {, then, using }(80) \tag{B}\\
& \text { then, using }(80)
\end{align*}
$$

we can write

$$
\begin{equation*}
\frac{\partial w^{\prime}}{\partial t}=\vec{\nabla} \times\left(\overrightarrow{v^{\prime}} \times \overrightarrow{w^{0}}\right)+\frac{1}{R_{e}} \nabla^{2} w^{\prime} \tag{81}
\end{equation*}
$$

$$
=\frac{v L}{v}=R_{e}
$$

where $R_{e}=\frac{L U}{D}$ is the Reynolds number
note that V has units of $\frac{\text { length }}{}{ }^{2}$ time so R is dimensionless.

This is important: for two systems with the same $R_{e,}$ the behavior is governed by (81). Thus to properly model astrophysical flows, or planes etc in the lab, one must do experiments with same $R e$

For $R_{e} \geq 3000$, (using L as radius ob pipe and u as velocity of mean flow) $\{$ empirical flow through pipe is unstable to becoming \{ result turbulent. $R_{e}<3000$, flow through pipe expenments is laminar.
Note also that R_{e} appears to indicate the relative importance of the last two terms in (81) but this is not always quite right! why??

For $R_{e} \ll 1, \quad(81)$ becomes

$$
\nu \nabla^{2} w^{\prime} \simeq \frac{\partial w}{\partial t}
$$

Stokes (1851) showed that a
sphere of radius a moving through
a viscous fluid with velocity V density ρ, viscosity V incurs drag force of $F_{D}=6 \pi \rho \nu a V$ this is called stokes Law for viscous flows.

$$
\begin{aligned}
& \propto \rho a^{3} V \frac{D}{a^{2}} \approx M V \frac{D}{a^{2}} \\
& =\rho a^{2} V c_{s}\left(\frac{\lambda_{m f \rho}}{a}\right)
\end{aligned}
$$

for $R_{e} \gg 1$, it world appear from (81) $=\rho a^{2} v^{2} R_{e}$ that the viscous term (the last term) can be ignored, and one might expect the system to be approximated by an ideal fluid. But it is more complicated in reality, when experiments are performed to test the drag force:

Flow past a cylinder for $30>R_{e}>10$

- loots like ideal flow but for $R_{e}>30$
vorties begin to appear downstream.

The vortices appear in a "wake" that increases in width farther downstream. ("carman vortex sheet") At very large R_{e}, the wake becomes turbulent, flow has large random velocities \rightarrow not l, Re ideal flow at all! what is going on to? produce this highly non-ideal behavior, despite la ge R_{e} ?
First, note than when turbulent wake is present, drag on cylinder or sphere much larger than stokes Law: In the large R regime:

$$
F_{0} \approx C_{0}\left(\pi a^{2}\right) \frac{\rho V^{2}}{2} \quad \text { Stoker } \quad(82)
$$

where C_{D} can be measured

If the drag force always equaled the stakes value then setting
(82) equal to stokes dog \Rightarrow

but experimentally: the drag coefficient falls off much mare slowly at large Reynolds number, Re

$$
\left\{R_{e} \equiv \frac{v a}{\nu}\right\}
$$

The reason has to do with boundary layers Near to the surface of the obstacle in the flow, velocity must change from large values to zero. Since this haprens over small scales, the effective R_{e} in that region is not much greater than 1, so near to the obstacle's surface the flow is far from ideal.
the, $J \nabla^{2} v$ term in the Navier-stohes equation becomes important because
Vichanges on scale $\delta \ll a$, so

$$
R_{\text {eff }} \equiv \frac{V \delta}{V} \ll R_{e} \equiv \frac{V}{V} a
$$

We can see also that the boundary layer grows with distance behind the obstet

- Namer - stones equation for v_{x} is given by:

$$
V_{x} \frac{\partial v_{x}}{\partial x}+V_{y} \frac{\partial U_{x}}{\partial y}=-\frac{1}{\rho} \partial x p+v\left(\frac{\partial^{2} d_{x}}{\partial x^{2}}+\frac{\partial^{2} v_{x}}{\partial y^{2}}\right)
$$

Assuming. $V_{y} \leqslant V_{x} \delta / L$ initially since $P_{J} V_{x}$ are not expected to vary' much along ${ }^{\text {convard }} x, 1$ the dominant 'terms are

$$
\rightarrow \quad V_{x} \frac{\partial V_{x}}{\partial x} \simeq \partial \frac{\partial^{2} V_{x}}{\partial y^{2}}
$$

or to $($ order of magnitude.

$$
\int_{\frac{V_{x}^{*}}{x \not L}}^{\text {order of magnitude }}=\frac{\partial \forall_{x}}{\delta^{2}}=7\left[\begin{array}{l}
\frac{V^{K} x}{V_{x}} \\
\left.=L^{1 / 2}\left(\frac{x^{1 / 2}}{R_{e}^{1 / 2}}\right)\right)
\end{array}\right.
$$

boundary layer grows as square root of distance downstream!

Note that because the viscosity is important in the boundary layer, heluin's vorticity ieovem is violated. Thus flux of vorticity is not conserved there and new vortex lines can form \rightarrow that explains wing vorticres can develop \& grow in the turbulent wale.

The reason for the development of a turbulent boundary layer is shear instabilities that develop at the sides of the obstacle from string velocity gradients (conditions for these instabilities can be derived) the turbulence is then carried downstream. Since the turbulence is a randomization of the bulk itocity, which eventually dissipates as heat, some of the bull energy of motion of the obstacle is lost $=7$ this is why turbulence. produces a drag! Equivalently, one can think produces a drag! equivalently,
of the bulk flow energy being randomized, if object is
at rest.
"order of magnitude" estimates for
stokes, Reynolds \& Epstein Drag

Stones Drag: when the flow is lamilier and the object size is much larger than the mean free path of particles, the drag force \vec{F}_{d} must depend on the flow velocity $\overrightarrow{\vec{u}}$, the object size, a, the flow density g, and the viscosity D. But the only combination of these quantities that produces units of force is \sim guvan $\left[\frac{\text { mass }}{l^{3}} \frac{l}{t} \frac{l^{2}}{t} l\right]=\left[\frac{m l}{t^{2}}\right]=[F]$ More detailed calculations produce
(units) $\vec{F}_{d}=6 \pi \rho \vec{u} v a$ given earlier
Reynolds Drag - when the flow is fast enough Replace D with that turbulence ensues, the drag no longer V_{T} depends explicitly on the viscosity. Then one must construed a force with ρ, u, and a only: the combination that works is given by

$$
F_{d} \& \rho u^{2} N a^{2} \sim\left[\frac{m}{l^{3}} \frac{l}{}_{t^{2}}^{l^{2}} l^{2}\right] \sim\left[\frac{m l}{t^{2}}\right] \sim[F]
$$

typically a divan constant is cmprisilly measured: force

$$
\Rightarrow F_{i}=\pi C_{d} \rho u^{2} a^{2} \quad R D: \rho u v_{+} a r c_{0} \rho a^{2} u^{2} \pi
$$

Epstein Drag
When the mem free path Amie is larger then the object site, then the dray is due to collisions win individual particles In this care the particles collide with the object at speeds sampled from the particle distibution function $f(p, x, t)$. On areroge however, for a quasi-marwellion distribution, the average particle speed' is the sound speed. The drag force, must depend on the 'object speed, the mass the particles calling with the object and the fraeining at which this occurs. The frequent of collisions is
$\sim n\left(\pi a^{2}\right)\left(C_{s}-u\right) \approx n \pi a^{2} C_{s}$ for subsonic $u \ll C_{s}$ flows:
 the particle wis and object speed to form a force reunites multiplying by the particle mass and flow sped to detain $F_{d, e p} \times m_{n} n \pi a^{2} C_{s} u \sim \rho_{\sim}^{\rho} \pi a^{2} C_{s} u$
 density of diffuse

Another way to think of the drag force is that the time scale for the object to change its speed by anovder oof magnitude is roughly

$$
\begin{aligned}
& \text { collision freyteny in the case of Epstein } \\
& \text { drag. }
\end{aligned}
$$

The ratio of masses appears on the right side because, it takes of order 1 collision of an H atom to. change the speed of an equivalent mass in the object. Thus we requite $N=\frac{m_{0 b}}{m_{n}}$ collisions to charge the object speed.
But $(*)$ is the save as the force equation.

$$
m_{\text {obj }} \frac{d V}{d t}=m_{H} V \omega_{c} \backsim \rho \pi a^{2} c_{c} V
$$

deviled on the previous prog.
Planet formation: voe
all 3 dray forces.

$$
\begin{aligned}
& \frac{\partial \vec{w}}{\partial t}=\vec{\nabla} \times(\vec{v} \times \vec{w}) \sqrt{\frac{1}{\rho^{2}} \vec{\nabla} \times \vec{\nabla} P} \\
&+\nu \phi^{2} \vec{w} \uparrow
\end{aligned}
$$

- (6)

H.

Gas Dynumics: the role of compressibility in adiabatic flows

- Compressible limit wd consing when using $\vec{\nabla} \cdot \vec{V}=0$
- compressibility is required for sound wares and for shocks
- Basics of compressible flow can be considered for perfect gas.

Perfat gas: $P=n k_{B} T=R_{g} T=\quad$ (83)

$$
\begin{aligned}
& R=\frac{k_{B} n}{\rho}=\text { mass specific gas constant }=\frac{K_{B}}{\mu m_{H}} \\
& \text { energy permass } \\
& \quad(\mu=1 \text { for neutral } \\
& H
\end{aligned}
$$

ε, internal energy permass

$$
(84)
$$

$$
\varepsilon=C_{v} T=\frac{R T}{\gamma-1}=\frac{p / \rho}{\gamma-1} \quad\left(C_{p}-C_{v}=R\right)
$$

$\gamma=\frac{C_{p}}{C_{r}}$, ratio of specitio heats at constant pressure and volume
for monatomic gas: $\gamma=5 / 3, c_{v}=3 / 2, c_{p}=5 / 2$
Entropy per unit mass:

$$
\begin{aligned}
& T d s=d \varepsilon+p d\left(\frac{1}{\rho}\right) \\
& \Rightarrow \text { from }(83),(84) \&(85) \Rightarrow\left\{\begin{array}{l}
d S=c_{v} \frac{d T}{T}+\frac{p_{1}^{d}}{d}\left(\frac{1}{\rho}\right) \\
=c_{v} d(p)+(\gamma-1) c_{g} d
\end{array}\right.
\end{aligned}
$$

Note un gas constant $-\left(\gamma-1[x, f] \frac{1}{\rho^{x}}\right.$ dy

$$
\begin{aligned}
P=n k_{b} T & =\underbrace{\frac{N_{m o l}}{V} \underbrace{\frac{\text { particks }}{m o l e}}_{N_{A}} k_{b} T=n_{m o s} T}_{n_{m o l}} \widetilde{R} T \\
& =\underbrace{n_{m o l} / N_{A} \underbrace{\text { particle }}_{\text {mass }}}_{\rho} \frac{k_{b} T}{\text { mass/particle }} \\
& =\rho \frac{k_{b} T}{\mu m_{A}}=\rho R T \\
\mu m_{A} & =\frac{\sum_{i}^{\sum_{i} n_{i}} n_{i}}{\sum_{i}}
\end{aligned}
$$

We also know that heat $d Q$
satisfies $d Q=d U+p d V$ and for adiabatic gas

$$
\begin{aligned}
& \text { and for adiabatic gas } \\
& d Q=0=d V+p d V \text { or }
\end{aligned}
$$

$\frac{d S}{d t}=0$ along a sireamiline from (85).

$$
\left(i e . \rightarrow \frac{d s}{d t}=\overrightarrow{t s}+\vec{b} \cdot \vec{b}=0\right)
$$

so that $(86) \Rightarrow$

$$
\frac{d\left(p / \rho^{\gamma}\right)}{d t}=0 \quad \text { for adiabatic }
$$

The enthalpy per unit mass, is given by

$$
W \equiv \varepsilon+\frac{p}{\rho}=\frac{\gamma}{\gamma-1} R T=\frac{\rho}{\rho}+\frac{p / \rho}{\gamma-1}
$$

$$
\begin{array}{r}
=\frac{[\gamma-x] P / s+B / \rho}{\gamma-1}=\frac{\partial P / \rho}{\partial-1} \\
(90)=\frac{\gamma-1}{\partial-1} R T .
\end{array}
$$

so that

$$
T d s=d \varepsilon+p d\left(\frac{1}{\rho}\right)=d W-\frac{1}{\rho} d p
$$

or $\quad d W=T d S+\frac{1}{\rho} d \rho$

- for adiabatic flow then....

W $\int \frac{d p}{\rho}=\omega+$ constant, so bernouitlis principle

$$
\begin{equation*}
\frac{1}{2} v^{2}+\int \frac{d \rho}{\rho}+\phi=\text { constant }_{2}=\frac{1}{2} v^{2}+\frac{\gamma}{\gamma-1} R T+\phi \tag{91}
\end{equation*}
$$

along a streamline, for adiabatic flow. \rightarrow

Note that adiabatic flows are assumed to have negligible dissipation (negligible heat generation). Thus such flows are intrinsically ron-viscoss and to focus on effects of compressibility we go back to consideration of ideal fluid (ignoring viscosity) for the moment under assumption that these transport presses operate on time slates long compare to the compressible Sound Waves effects considered.

Lets derive sound speed:
consider homogeneous, initially stationary flow with dasily go and pressure p_{0} in absence of external forces perturb pressure such that

$$
\begin{equation*}
p=P_{0}+P_{1}\left(\vec{x}_{3} t\right) \tag{92}
\end{equation*}
$$

and density responds with perturbation such that

$$
\begin{equation*}
\rho=\rho_{0}+\rho_{1}(\vec{x}, t) \tag{43}
\end{equation*}
$$

velocity
$\vec{V}=\vec{V}_{1}(x, t) \quad$ where subscript 1 indicates
perturbed quantities

$$
\begin{align*}
& \text { Wercan write: } \left.\frac{\Delta P \frac{\rho-P_{b}}{\rho-\rho}}{\rho-\rho_{1}} \frac{\rho}{\rho_{1}}=\frac{d \rho}{d \rho}\right) \tag{71}\\
& P_{1}=\frac{d \rho}{d \rho} \rho_{1}
\end{align*}
$$

(definition)
$\equiv C_{S}^{2} \rho_{1}$ where $\frac{d P}{d \rho} \equiv C_{S}^{2}$
assuming perturbations evolve on times short compared to visas or conducive transport the flow is adiabatic., then (88) \& (94) imply: $\quad C_{s}=\sqrt{\frac{\gamma P_{0}}{\rho_{0}}} \quad p=k \rho^{\gamma}$ Which is the adiabatic sound speed. $\frac{d \rho}{d \rho}=c_{s}^{2}=\frac{\gamma \rho}{\rho} \approx \frac{\gamma P_{0}}{\rho_{0}}$ perturbed quantities satisfy continuity eau:

$$
\frac{\partial \rho_{1}}{\partial t}+\rho_{0} \cdot \vec{\nabla}_{0} \vec{V}_{1}=O_{1} \quad \partial_{t} \rho+\vec{\nabla} \cdot(\rho \vec{V})=0 \quad \partial_{t} \rho_{1}+\vec{V}_{0} \rho \rho+\rho\left(\vec{V}_{0} \vec{V}_{1}=0 \quad(46)\right.
$$

$\binom{$ where we assume $\rho_{1}<\rho_{0}, P_{1} \ll P_{0}, V_{0}=0$ and }{ neglect quadratic terms. in -perturbed quantities. } and recall $\rho_{i} ; P_{B}$ are constant in space momentum (Euler)eqn:

$$
\left(\rho_{0}+\rho_{1}\right)\left[\frac{\partial \vec{V}_{1}}{\partial t}+\left(\vec{V}_{1}+\vec{\partial}\right) \vec{V}_{1}\right]=-\vec{\nabla} P_{1}
$$

after linearizing: $\Rightarrow \rho_{0} \frac{\partial \vec{V}_{1}}{\partial t}=-\vec{\nabla} P_{1}$

$$
\begin{equation*}
=-C_{j}^{\partial} \vec{\nabla} \rho_{1} \tag{97}
\end{equation*}
$$

time derivative $\underset{\text { divergence }}{ } \frac{\partial^{2} \rho_{1}}{\partial t^{2}}+\underset{\sim}{\rho_{0}} \vec{\nabla} \cdot \partial_{t} \vec{V}_{0}=0$
combining $\wedge(96)$ and $\wedge(97)>\rho_{0} \partial_{t} \vec{\nabla} V_{1}=-c_{s}^{2} \nabla \rho_{1}^{2}$

$$
\begin{equation*}
\Rightarrow \frac{\partial^{2} \rho_{1}}{\partial t^{2}}-C_{S}^{2} \nabla^{2} \rho_{1}=0 \tag{98}
\end{equation*}
$$

which is a wave equation for acoustic waves propagating at speed. CS..
Note: iso thermal case, $P_{0}=$ constant ρ_{0}

$$
P=\frac{\rho k T}{\rho m_{n t}} \underset{\gamma=1}{ } \quad \Rightarrow C_{S}=\frac{d P}{d \rho}=\left(\frac{P_{0}}{\rho_{0}}\right)^{1 / \alpha}
$$

in air, at $0^{\circ} \mathrm{C} ; P_{5}=1 a t m=10^{6} \mathrm{dyn} j \rho_{0}=10^{-\frac{3}{y}} \frac{\mathrm{cms}}{\mathrm{cm}^{3}}$
I atm
and atmospheric pressie, $C_{S}=2.8 \times 10^{4} \frac{\mathrm{~cm}}{\mathrm{~s}}$
but this is lower than what is measured experimentally (Newton 1689) $\approx 10^{5}$ pas all 1 din $=0.1$ pascals

Laplace (1816) was first to ta he adiabatic case, $\gamma=1.4 \Rightarrow C_{S}=3.32 \times 10^{4} \mathrm{~cm} / \mathrm{s}$ which agreed with experiment $\left(c_{S}=\sqrt{\frac{\gamma p}{\rho_{0}}}\right)$

- In liquids do you expect sound speeds to be higher or lower than in gasses?
Higher since they are harder to compress so for given $d P$, $d \rho$ is smaller and $C_{s}^{2}=\frac{d p}{d \rho}$ is then larger.

For linear perturbation analysis, superposition holds and we can decompose perturbation into Fourier components

$$
\begin{equation*}
\rho_{1}=\tilde{\rho}_{1} \exp [i(\vec{k} \cdot \vec{x}-\omega t)] \tag{99}
\end{equation*}
$$

plugging into $(98) \Rightarrow$ dispersion relation

$$
\begin{equation*}
w^{2}=c_{s}^{2} h^{2} \Rightarrow\left(\omega \frac{y}{2 \pi}\right)=c_{s} \tag{100}
\end{equation*}
$$

which applies only for simple, mitially homergentoos medium (remember we ignored quadratic terms and \vec{v}_{0})
note that acoustic wares of all frequencies phase velocities are equal $(\Rightarrow$ non-dispersice wares) For stratified atmosphere, group a plage velocities are not equal, and sound wares are dispersive.
Note that \vec{k} gives direction of wave propagation. $(97) \Rightarrow \vec{V}_{1} \| \vec{k}$ so sound waves are longitudinal. Since $\vec{\nabla} \cdot \vec{v}, \propto \frac{n^{2}}{\omega} \rho \propto e^{([\vec{r} \vec{x}-\omega t)}$ $\vec{\nabla} \cdot \vec{v}$ represents alternating compressions a rarefactions
shocks
-or large amplitude waves, quadratic pertwbation terms cannot be neglected, invarticular the term $\vec{V}_{1} \cdot \vec{\nabla} V_{1}[$ in fud mandan eau. $(96 a)]$
More specifically, perturbation approach does not really apply -for large amplitude wares.
Consider the I-D Euler equation; and consider x-direction as both wale proplegation and direction of fluid velocities: $\left(V=V_{x}\right.$ here)

$$
\begin{equation*}
\frac{\partial v}{\partial t}+\underbrace{v \frac{\partial v}{\partial x}}_{v^{2} / \Delta x}=\underbrace{-\frac{1}{\rho} \frac{\partial p}{\partial x}}_{\sim c_{s}^{2} / \Delta x} c_{\text {the seton }} \tag{101}
\end{equation*}
$$

To assess the influence of the second term we drop the last term and solve the simpitrequation for $r(x, t)$:
(102)

$$
\frac{\partial V}{\partial t}+v \frac{\partial V}{\partial x}=0
$$

consider the curves $d x / d t=v$ in the $x_{j} t$ plane.
not that $\frac{d V}{d t}=\frac{\partial V}{\partial t}+\frac{\partial V}{\partial x} \frac{d x}{d t}$ so $(10 t) \Rightarrow$
$\frac{d V}{d t}=0$ along any curve for which $V=\frac{d x}{d t}$.
we started with partiul dif eqn but ended with ordivary ditteqn:

$$
\begin{equation*}
\frac{d \vec{v}}{d t}=0 \tag{103}
\end{equation*}
$$

(Curves given by (103) are called "chavacteriske curres" of equ (102), and \vec{V} is the niemann invaviant) Consider an intial velocing prolite:

under the action of (102), profile evolves as sequence on the lett.
F Initially p moes faster than ib
 but comoving verong: curshot so $p-q>p^{\prime}-n^{\prime}:$ points become closer fogether aloy their trajetoris.
eventully $p^{\prime \prime}$ overtakes q" sugegesting velonty protile becumes multivalved.
This is unplysial and more physies is need, but repesents the onset of gleepening of waves to fow shouls \rightarrow
shock structure
note how even initially smooth wave can steeper to form a shock. Shock is small region over which fluid variables change dramatically. To see what the change is' like we can think of it as discontinuity and Solve the "jump conditions"
consider shock propagating in undisturbed medium of density ρ_{1}, p_{1} and lets wove into 'ore at which shock is at rest.

Now we can appeal to flux conseruition equations to understand how quantities large across the shack:
continuity equation: flux of particles

$$
\begin{equation*}
\partial_{t} \rho+\nabla \cdot(\rho \vec{V})=0 \tag{103}
\end{equation*}
$$

Momentum can also be written as conservation flux equations:

$$
\begin{aligned}
& \rho \partial_{t} \vec{v}=-\rho \vec{V} \cdot \nabla \vec{v}-\vec{\nabla} p \text { or } \\
& \partial_{t}(\rho \vec{V})=\vec{V} \partial_{t}-\rho \vec{V} \cdot \vec{\nabla} \vec{V}-\vec{\nabla} P \\
& \text { vie }(103) \Rightarrow=-\vec{v} \vec{\nabla} \cdot(\xi \vec{v})-\rho \vec{v} \cdot \vec{v}-\vec{\nabla} p \\
& \Rightarrow \partial_{t}\left(\rho V_{j}\right)=-\partial_{i}\left(\rho v_{i} v_{j}\right)+g \vec{k} \Delta \vec{v}-g \vec{v} \hat{v}_{\hat{v}}-\partial_{j} \rho \\
& \Rightarrow \partial_{t}\left(\rho V_{j}\right)+\partial_{i}\left(\rho V_{i} V_{j}+P \delta_{i j}\right)=0
\end{aligned}
$$

momentum equation in form of conservation law
with use of (103) the Euler momentum equation can be written as flux of maxantumeqn:

$$
\partial_{t}\left(\rho V_{j}\right)+\partial_{i}\left(\rho V_{i} V_{j}+p S_{i j}\right)=0 \quad \text { (104) }
$$

Energy equation can be manipulated by use of (103) \& (104) to also take form of tux conservation en:

$$
\begin{aligned}
& \text { uservatich eq: } \\
& \partial_{t}\left(\rho \varepsilon+\frac{1}{\partial} \rho v^{2}\right)+\vec{\nabla} \cdot\left[\rho \vec{v}\left(\frac{1}{2} v^{2}+\frac{\stackrel{\rho}{\hat{p}}}{(\gamma-1) \rho}\right)\right]=0 \quad \text { (105) }
\end{aligned}
$$

In $(103),(104),(105)$ we have ignored viscous terms and thermal conduction. In steady state

$$
(103) \Rightarrow \quad \int_{\text {box which spans across the tiscontion }}^{\int \rho \vec{v} \cdot d \vec{S}=O}=\int \vec{\nabla} \cdot(\rho \vec{v}) d \vec{V} \cdot(106)
$$

consider a small box which spans across the discontianty:

$$
\begin{equation*}
-\rho V_{1} S_{1}+\rho V_{2} S_{2}=0 \tag{107}
\end{equation*}
$$

then $(106) \Rightarrow \rho_{1} V_{1}=\rho_{2} V_{2}$ for $S_{1}=s_{2}$
similarly, for steady state (104) and (105) imply that for 1-D flow:

$$
\begin{equation*}
\frac{P_{1}+\rho_{1} V_{1}^{2}=P_{2}+\rho_{2} V_{2}^{2}}{\frac{\partial}{2} V_{1}^{2}+\frac{\gamma P_{1}}{(\gamma-1) \rho_{1}}=\frac{1}{2} V_{2}^{2}+\frac{\gamma P_{2}}{(\gamma-1) \rho_{2}}} \tag{108}
\end{equation*}
$$

now we have 3 equations $(107,108,109)$ for 6 variables $\left(\rho_{1} v_{1} p_{1} ; \rho_{2}, v_{2} \rho_{2}\right)$

Eliminative $P_{2} \& V_{2}$ + algebra \Rightarrow

$$
\frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M^{2}}{2+(\gamma-1) M^{2}} \text {, where }
$$

'M $\equiv \frac{V_{1}}{\sqrt{\gamma P_{1} / s_{1}}}=\frac{V_{1}}{C_{S_{1}}}$ is the Mach Number
and measures the speed of the upstream flow, or the speed at which shock is propagating into upstream flow as measured in the frowne where upstream, at rest Note we expect $M>1$ for shock: if $M<1$, then shock cold produce acoustic wares moving with sound speed, and there wall be no pileup of ware fronts, so any disisutionily world hot servia.

We can also write (110)
as $\frac{\rho_{2}}{\rho_{1}}=\frac{\gamma+1}{(\gamma-1)+2 / M^{2}}$
thus, for $M>1$

$$
P=\rho k T=P_{2 \rho^{\gamma}}
$$

$\rho_{2} / \rho_{1}>1$ and the ratio increases with $M . \gamma=1$
Thus a faster shock \leftrightarrow more compression
As $M \rightarrow 1 \quad \rho+/ \rho_{1} \rightarrow 1$: no shock.
The above calculation was done in the shock frame. For non -relativistic flaws the compression patio (III) is unchanged in the lab frame. In the lab frame, the shake advances into the undisturbed median, compressing the flow behind it. Note for a monatomic gas $\gamma=5 / 3$ and $\frac{\rho_{2}}{\rho_{1}}=4$ as $M \rightarrow \infty$. This is maximum compression S_{1} for a non-relativistic non-radiating gas.

We have neglected viscosity, assuming shock is infinitely thin, but indeed it is the viscosity and transport that determine the show thickness. Also radiative shocks can have langer compression ratios. Why?

Some aspects of shock propagation through Supernova envelope and ambient interstellar medium

- deep in star where crengy from onward propagatey material cones from radioactivity themalization occurs with temp on optour range.
, when outflow becomes optically thing effective "temperature" goes up (that is, γ and x-row, photons are not down scattered efficiently so we see high energy thon-thermal emission
- Source of energy eventually changes from radioactive decay, to conversion of bulk flow energy at shock (remember shows are sites of bulk How dissipation)
- Forward shock and Reverse shocks are present:

[Shocks propagate away from the highest density regions. Recuse
 of rap is cooling by Bremestrahlougg in the compressed regions, the high density

- note that the ejecta, contact discontinuity and reverse shock are all moving outward in the lab frame, but in the frame of the contact discontinuity there are shocks propagating both outward = forward and inward toward the explosion point = reverse shock.
- forward \& reverse shocks are important concepts throughout supersonic astrophysics (jets, GRe, eta..)
- The supernova Remnant SNR (scales ≥ 1000 Au) emits by conversion of bulk flow energy at shock: ejecta has kinetic energy

$$
\begin{aligned}
& =10^{r \operatorname{erg}}=\frac{1}{2} M_{e j} V_{e j}^{2} \\
& M_{e j} \simeq 2 M_{\theta)} \Rightarrow V_{e j}^{2} \geq 10^{18} \frac{\mathrm{~cm}^{2}}{\mathrm{~s}} \simeq V_{e j} \simeq 10^{4} \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{aligned}
$$

$\Rightarrow \quad$ "temperatures" as high as $10^{8}-10^{9} \mathrm{~K}$

$$
\left(u \sin y \quad V=\left(\frac{h T}{m_{p}}\right)^{1 / 2}\right)
$$

- but there is an important subtlety as the shock reaches these scales ≥ 1000 AU keys look a bit at the shock physics
- Recall from our brief discussion, shocks form as waves steepen non-linearly

wares are calculated as linear perturbations of the hydro equations. They wove at speed ≈ 0 for un-magneized plasma. Because pressure disturbance from ejecta mores at $V_{\text {eject }} \gg\left(\frac{T_{1 S M} k_{b}}{m_{p}}\right)^{1 / 2}$ wares pile up:

The rule of "nonlinearity"

randomization of ordered Notion \rightarrow hentiligy. arises in the Navies. Stokes equation (fluid momentum)

Viscosity is always approximately \sim speed x length: Typically, for ambient ISM into which shock propagates $\nu \simeq C_{s} l_{\text {mate }}$. Because "non-limar" etteds induce dissipation a $A_{\text {meanfrepath we know shocks are important }}$ sound Speed where $|V-\nabla V|=\nu \nabla^{2} V$

$$
\begin{aligned}
& v^{x} / x=v i v^{x}
\end{aligned}
$$

in vicinity of shook, the velocity transits from $V_{1}>C_{S_{1}}$ to $V_{2} \leqslant C_{S_{2}}$ 绍 $V_{2} \approx \frac{V_{1}}{4}$ (when no cooling)
so eqn $(93) \Rightarrow$ l ℓ eff should be the scale Over which the flow changes from "upstream" to "downstream" Typically, therefore we expect the shock thichners to be 15 left. (In reality, instabilities broaden the shock somewhat but put that aside for the moment). Now let us estionate hest for supernova remnants; At ejection velocity
$V_{e j}=10^{9} \mathrm{~cm}$ Kinetic energy per proton in re ejecta is about 2 MeV . As these protons hit (largely neutral) H atoms of the ISM, the latter will ionize.
Crass section of interaction is $\operatorname{Sion}=10^{-17} \mathrm{~cm}^{2}\left(-\frac{\hbar^{2}}{m^{2} v^{2}}\right)$ Energy lost per rimization is $\approx 50 \mathrm{eV}$, which represents the inelastic part of the collision) The stopping distance of the impinging protons is therefore

$$
\begin{aligned}
& \text { ref } \frac{E}{d E} \approx \frac{E}{d E} \text { lonfp,im }=\frac{2 M e v}{\text { SDev }} \frac{1}{n \text { sion }} \\
& \text { Stopping } \Rightarrow l=4 \times 10^{1} \cdot 10^{17}=4 \times 10^{21} \mathrm{~cm} \simeq 10^{3} \mathrm{pc} \text { ! } \\
& \text { lenglo for } 2 M_{e}^{\text {eff }} \text { proton in the ejecta }
\end{aligned}
$$

But shock thichnesses observed are MucH Smaller than $10^{3} \mathrm{p}$. In tact the entire remnants become "invisible" (merged with ambient medium) on scales of 50 pe. Thus, how can thin shock form if the scale $\ell_{\text {eft }}$ were actually $10^{3} \mathrm{pc}$? ?

Here the answer is magnetic fields? calculate the Larmor radios for microgauss
field: $l_{L} \equiv \frac{M G V_{+h}}{e B}=\frac{\left(10^{-24} \mathrm{~g}\right)\left(3 \times 10^{10} \frac{\mathrm{~cm}}{\mathrm{~s}}\right)\left(10^{9} \frac{\mathrm{~m}}{\mathrm{~s}}\right)}{\left(4 \times 10^{-10}\right)\left(3 \times 10^{-6} \mathrm{G}\right)}$
 for "collisionless shocks" in astrophysise sale tet is They wake the "effective mean-free path" equal to the Larmor radius which is much then nus mich smaller than the collisional mf even for extremely weak magnetic fields.

More on shock Jump conditions
And Application to Supernova Blast wave.

- Assume. Hat the shock represents a "then disuntinuity. This was justitets by the role: of magnetic fields disussed above)
- Conservation of mass, energy $\&$ momentum Can all be written $\partial_{t} Q+\vec{\nabla} \cdot \vec{F}_{Q}=0$, as disussed.
- If we integrate such a conservation law across the thin discontinuity using the pill box as shown:

$$
\begin{aligned}
& \text { domnstrenw } \rightarrow \text { show moves }
\end{aligned}
$$

but volume is arbitrary
so that $\int \vec{\nabla} \cdot \vec{F}_{Q} d^{3} x=0=\int_{\vec{S}} \vec{F}_{a} \cdot d \vec{S}$.
by Gauss' theorem
For mass continuity:

$$
\begin{aligned}
& 2 \rho^{\prime}+\nabla \cdot(\rho u)=0 \Rightarrow 6 \rho \vec{u} \cdot d \vec{s}=0 \\
& f_{1} H_{1} d / \%_{1}-\rho_{2} d t d s=d s \\
& \text { for pillbox } \\
& \Rightarrow \rho_{1} u_{1}=\rho_{2} u_{2} \quad\left(a_{s}\right)
\end{aligned}
$$

Similarly: for flows in which B-field is

$$
\begin{array}{ll}
w_{1}+\frac{1}{2} v_{1}^{2}=w_{2}+\frac{1}{2} v_{2}^{2} & \begin{array}{l}
\text { evergy } \\
\text { conseruation }
\end{array} \quad\left(97_{5}\right) \tag{975}\\
P_{1}+\rho_{1} v_{1}^{2}=P_{2}+\rho_{2} v_{2}^{2} & \begin{array}{c}
\text { momentum fhx } \\
\text { corderuation (985) }
\end{array}
\end{array}
$$ everegtionly negliggty:

$$
\left.(W)=\text { enthalpy density }=\frac{\gamma}{\gamma-1} \frac{p}{\rho}=\frac{C_{s}^{2}}{\gamma-1}\right)
$$

965-98s are the Ranline-Hugoniot jump conditions
Again we detine $M_{1}^{2} \equiv V_{1}^{2} / c_{s_{1}^{2}}^{2}$
Solving $(965-98 s)$ (Ileare as exercise)

$$
\begin{align*}
& \frac{\rho_{2}}{\rho_{1}}=\frac{(\gamma+1) M_{1}^{2}}{2+M_{1}^{2}(\gamma-1)}=\frac{V_{1}}{V_{2}} \quad\left(4 q_{s}\right) \tag{44s}\\
& \frac{P_{2}}{P_{1}}=\frac{(\gamma+1)+2\left(M_{1}^{2}-1\right)}{\gamma+1} \\
& \frac{\left(100_{s}\right)}{C_{s_{2}}^{2}}=\frac{T_{2}}{C_{s}^{2}}=\frac{\left[(\gamma+1)+2\left(M_{1}^{2}-1\right)\right]\left[(\gamma+1)+(\gamma-1)\left(M_{1}^{2}-1\right)\right]}{\left[(\gamma+1)^{2} M_{1}^{2}\right]} \quad(10 b) \\
& P_{2}=P_{1} \frac{2 M_{1}^{2}}{\gamma+1}=\frac{2 P_{1} V_{1}^{2}}{(\gamma+1) C_{s_{1}}^{2}}=\frac{2}{\gamma(\gamma+1)} \rho_{1} V_{1}^{2} \quad(106 a) \\
& M_{1}^{2}>1
\end{align*}
$$

Assume flow is supersonic on side 1
so $M_{1}=\frac{V_{1}}{\tau_{i s}}>1$.
Then $\frac{P_{2}}{P_{1}}>1, \frac{\rho_{2}}{\rho_{1}}>1, \frac{V_{2}}{V_{1}}<1, \frac{T_{2}}{T_{1}}>1$.

$$
\begin{align*}
& \text { Strongest shock } \Rightarrow M_{1}^{2}>1 \\
& \Rightarrow \frac{\rho_{2}}{\rho_{1}}=\frac{\gamma+1}{\gamma-1} ; \underbrace{P_{1}}_{P_{2}}>1, \frac{T_{2}}{T_{1}}>1 \tag{1020}\\
& \underbrace{}_{\left(\begin{array}{l}
\text { limitag } \\
\text { relation os }
\end{array} M_{1}^{2} \rightarrow \infty!\right) \Rightarrow \text { for } \gamma=5 / 3} \Rightarrow \frac{\rho_{1}}{51}=4
\end{align*}
$$

[Cote: momentum conservation ane mass
conservation are usually satisfied as in 9698985 , but energy conservation can have important radiative terms, chemical reaction terms, How conduction..., we ignore Hexed tor the moment.
the above treat rent assumes that the viscous terms operate only in the thin layer of the shock itself; this gets back to our notion from the earlier discussion that the shock thickness can be estimated by comparing dissipative \& bulk velocity terms:

In momentum equation, compare $\vec{V} \cdot \vec{\nabla} \vec{v}$ term
to $\Delta \nabla^{2} \vec{V}$ term: (seepage 93)
$=1 \frac{V^{\chi}}{\ell} \sim \frac{V_{\text {sos }} \forall \forall}{e^{x}}=>\quad V=\frac{V_{\text {eft }}}{e_{\text {eff }}}$, where $V_{\text {eff }}$ is the $\ell_{\text {eff }}$ 'affective viscosity' a shock
now across the shack, the bull energy of the shock. flow in V_{1} gets converted to random thermel energy such that $C_{S_{2}}=V_{1}$. As discussed earlier the scale left is determined by multiples of larmor radius rather than collisional mean free path
The shock is actually a "current "sheet" when B-firld endured in jump conditions. This is because maxwells equation require that tangential component of E is conserved deross the shock: again consider pill surtale across the shock \rightarrow
from Maxwells equations:
(2) M1 (1)

$$
\begin{aligned}
& \Rightarrow \oint \vec{E} \cdot d l=0
\end{aligned}
$$

for arbitrarily thin pillsurtace only sides contribute: ($T=$ "tangential")

$$
\begin{gathered}
\Rightarrow \oint \vec{E}-d l=0=E_{1,1} d-E_{1 ; 2} d=0 \\
\Rightarrow E_{1, T}=E_{2, T}
\end{gathered}
$$

Since ohms law implies

$$
\vec{E}=-\frac{\vec{V}}{C} \times \vec{B}+\eta \vec{J} \quad \text { then }
$$

$$
\begin{aligned}
& E_{1, T}=E_{d, T} \\
\Rightarrow & \left(-\frac{\vec{V}}{C} \times \vec{B}+\eta \vec{J}\right)_{1, T}=\left(-\frac{\vec{V}}{c} \times \vec{B}+\eta \vec{J}\right)_{2, T} \sin \alpha
\end{aligned}
$$

$$
E_{1, T}=E_{\partial, T}
$$ from aw och BUT where OXB increases

, it can become large
but $\vec{J}=\frac{c}{4 \pi} \vec{\nabla} \times \vec{B}$ and away from shock, $\frac{M C}{4 \pi} \vec{\nabla} \times \vec{B}$ can be considued small;
η is the resistivity and most astro-plasmas have low resistivity. However, near the shock $|\vec{\nabla} \times \vec{B}|=\left|\frac{B}{\ell_{\text {eff }}}\right|=\frac{B}{\ell_{L} F \operatorname{larmoin}}$
The gradient scale is sal and near the shock $n^{\vec{J}}$ is important. This is why a shock is a "current sheet". Magnetic Reconnection provides another example of a current sheet based on same principle: Y' $\left(\begin{array}{l}\text { magnetic field annihilation at doted } \\ \text { intertale: Exercise }\end{array}\right.$ $B_{2} \quad B_{1}$ $\binom{$ reconnection }{ event } interface is a current sheet if interface is thin!

Now back to the evolution of the expanding SN shock: Transition to Sedor phase

During the early
stages of the propagation of the optically thin phase of the shock's progress through the envelope and into ISM, the ejecta material has much' more inertia than the $1 S M$ with which it interacts. The ejecta speed V_{1}, is thus constant.

$$
\Rightarrow{ }^{2 \operatorname{stan} t} \dot{r} \propto t
$$

BuT: There exists a critical radius r_{c} at which the ejecta mass $M_{\text {ejecta }}=\frac{4}{3} \pi \operatorname{sism}_{c} r^{3}$ At this point the blast enters the sedor plage. Now the mass is piling up behind the shock and this mas stor to dominate the total mas of the ejecta. the mass piles up behind the shock, but ahead of the contact discontinuity:

Once the sedou phase is underway, the speed of the blast wave is no longer constant: In the Sedor phase mass is dominated by that accumulated from. ISM so the Energy is

$$
\begin{equation*}
E \approx \frac{1}{2} \frac{4 \pi}{3}\left(\rho_{\text {saw }} r^{3}\right) V_{1}^{2}=\text { constant } \tag{1035}
\end{equation*}
$$

constant f ism \Rightarrow

$$
\begin{align*}
& E \propto r^{3} V_{1}^{2} \Rightarrow r^{3}\left(\frac{d r}{d t}\right)^{2}=\text { constant }=(\\
\Rightarrow & r^{3 / 2} d r=\left(d t \Rightarrow \frac{2}{5} r^{5 / 2}=t+女_{0}^{20}\right. \\
\Rightarrow & r=(\text { constant }) t^{2 / 5} . \tag{104s}
\end{align*}
$$

Another way to arrive at this is to note that $\rho_{\text {ism }}$ and E are constant and

$$
\begin{align*}
E & =\frac{1}{2} M\left(\frac{r}{t}\right)^{2}=\text { constr } \\
\rho_{\text {isM }} & =\frac{M}{\frac{4 \pi}{3} r^{3}}=\text { const. } \\
& (1065) \tag{1065}\\
M \frac{E}{\rho_{\text {eliminate }}} & =\text { cons }=\frac{2 \pi}{3} \frac{r^{5}}{t^{2}} \Rightarrow r=\left(\frac{E t^{2}}{\rho_{i s M}}\right)^{1 / 5}
\end{align*}
$$

$$
\begin{align*}
& 1 a v=1.5 \times 10^{13} \mathrm{~cm} \quad 1 p c=3 \times 10^{18} \mathrm{~cm} \tag{513}\\
& \Rightarrow r=\left(\frac{E}{\rho_{15 n}}\right)^{1 / 5} t^{2 / 5}=3 p c\left(\frac{E}{10^{5 / r g}}\right)^{1 / 5} n_{15 \mathrm{M}}^{-1 / 5}\left(\frac{t}{300_{y}}\right)^{2 / 5} \tag{1085}
\end{align*}
$$

$$
\begin{align*}
& \text { Using } V_{1}=c_{s_{2}}=7 \\
& T=\frac{m_{p}}{k_{b}} C_{S_{2}}^{2}=\frac{m_{p}}{k_{b}} V_{1}^{2} \simeq 9 \times 10^{8} \mathrm{~K}\left(\frac{E^{5}}{10^{5} \mathrm{erg}}\right)^{2 / 5-2 / 5 / 5}\left(\frac{t}{\left(300 y^{2}\right.}\right)^{-\frac{b}{5}} \\
& \Rightarrow \text { at } t \approx 3.5 \times 10^{4} \mathrm{y}^{\prime}, T \simeq 3 \times 10^{6} \mathrm{~K} \tag{3}
\end{align*}
$$

Thus if SNR is observed with $T \in 3 \times 10^{6} 6$ \rightarrow fluent the time in sedou phase to reach that stage is, from (110)

$$
\begin{align*}
& t_{\text {sedov }}=3.5 \times 10^{4} \mathrm{yr}\left(\frac{T}{3 \times 10^{6}}\right)^{-5 / 6}\left(\frac{E}{10^{5 / 1} \mathrm{erg}}\right)^{1 / 3} n_{15 \mathrm{M}}^{-1 / 3} \tag{1/15}\\
& \Rightarrow \text { for given WorT and }
\end{align*}
$$

\Rightarrow for given V or T and r observed (totefermine age can be determined

Now, as deceleration becomes significant, the outer shells of expanding sphere decelerate first \Rightarrow material in the inner region catches up with waterial in the outer regions,

(same picture as we have disused collier)
Region (A) is... supersonic with respect to (B) \Rightarrow reverse shock moves "bapleward" in frame of contact discantinu,ly, In lab frame everything is moving outward.
At the reverse shock, kinetic energy of ejecta is reheated by reverse Sock dissiperem as it passes through, \Rightarrow mars some of the bulk energy of the ejecta goes back wto heat of ejected material. The forward shool converts some ob the bulk energy into heating ambient ISM material. (x-ray emission is visible from both shacked regions)

$$
\begin{aligned}
& E \propto r^{3} r^{2} \propto t^{0} \\
& P \propto r^{3} \dot{r} \propto E / r \\
& r \propto t^{-3 / 5} \\
& \Rightarrow \rho \alpha t^{3 / 5}
\end{aligned}
$$

Why moment ion increases in energy conserving phase
thin shell:

$$
\begin{aligned}
& \frac{4 \pi \rho_{1} R^{3}}{3}=41+\rho_{2} R^{2} D \\
& D=\frac{1}{3} R\left(\frac{\gamma-1}{\gamma+1}\right) \simeq 0.1 R \\
& \rho_{1} u_{1}=\rho_{2} u_{2} \\
& u_{2}=\frac{\rho_{1}}{\rho_{2}} u_{1}=\frac{\gamma-1}{\gamma+1} u_{1}=4 u_{1} \\
& \text { shocked gas, }
\end{aligned}
$$

relative to unshocked gas, speed of shucked gas is:

$$
V=u_{1}-u_{2}=\frac{\partial u_{1}}{\partial+1}=(\mathrm{m} .2)
$$

for $\gamma^{2} 3 / 3 \Rightarrow=\frac{3}{4} u_{1}$
\rightarrow Radial momentum charge per time of shocked gas in shell:
shell mass shell speed

$$
\frac{d}{d t}\left[\frac{4 \pi \rho_{1}}{3} R^{3} \frac{\partial U_{1}}{\partial+1}\right]=4 \pi R^{2} P_{\text {in }}^{\text {shell mass }} \text { (n.3) }
$$

Any gain hus to come from pressure on inside of shell P in Now suppose that this pressure scales with the pressure within the shell, that is:

$$
\begin{aligned}
& \text { the shell, that is: } \begin{aligned}
& \alpha=\gamma \tilde{\alpha} \\
&=5 / 3 \cdot 1 / 2^{n} n / 6 \\
& P_{\text {in }}=\sqrt{2} P_{2}
\end{aligned}
\end{aligned}
$$

(crude assumption but lets proceed.)

- For strong s hock $\left(M_{1} \gg 1\right)$:

$$
\begin{aligned}
& P_{2}=P_{1} \frac{2 M_{1}^{2}}{\gamma+1}=\frac{2 P_{1} u_{1}^{2}}{(\gamma+1) c_{s}^{2}}=\frac{2}{\gamma(\gamma+1)} \rho_{1} \rho_{1}^{2}(M, 4) \\
& \rho_{1}=c \operatorname{unst} \\
&=\rho_{1} \text { sm }
\end{aligned}
$$

$$
\begin{align*}
& \text { so M. } 3 \text { then gives.' } \\
& \frac{d}{d t}\left[\frac{y \pi S_{1}}{3} R \frac{\partial u_{1}}{\partial 7 t}\right]=\frac{2 \pi R^{2} \alpha}{\gamma} \frac{\partial}{\partial+1} S_{1} u_{1}^{2} \\
& \text { リ } \\
& \frac{d}{d t}\left[R^{3} U_{1}\right]=\underset{\sim}{3} \frac{\alpha}{\gamma} R^{\alpha} U_{1}^{2} \\
& \text { 三32 } \\
& =3 \hat{\alpha} R^{2} U_{1}{ }^{2} \tag{M.5}\\
& =r \\
& \begin{array}{l}
\text { from } \\
\text { be fore }
\end{array}
\end{align*}
$$

but $U_{1}=\frac{d R}{d t} \Rightarrow M .5$ can be written

$$
\begin{equation*}
\frac{d}{d t}\left[R^{3} \dot{R}\right]=3 \tilde{\alpha} R^{2} \dot{R}^{2} \tag{M.6}
\end{equation*}
$$

＂guess＂that $R \propto t^{b}$ ，then M． 6

$$
\begin{aligned}
& \text { "guess" } \\
& \Rightarrow \frac{d}{d t}\left[t^{3 b} b t^{b-1}\right]=3 \tilde{\alpha} t^{2 b} b^{2} t^{2(b-1)} \\
& \Rightarrow(4 b-1) b t^{4 b-2}=3 \tilde{\alpha} b^{2-} t^{4 b-2}
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow b=\frac{1}{4-3 \tilde{\alpha}} \frac{1}{\frac{1}{4-3 \tilde{\alpha}}} \\
& \Rightarrow R \alpha t^{b}=t^{\frac{3+3 \tilde{2}}{4-3 /}} \propto R^{-3+3 \tilde{\alpha}}=R^{3(\tilde{\alpha}-1)} \\
& \Rightarrow \frac{d R}{d t} \propto t^{\frac{-3}{4-3 \tilde{2}}} \quad \text { (M, db) } \tag{M,7b}
\end{align*}
$$

So we need to determine $\tilde{\alpha}$,
For adiabatic blast wave, energy E is conserved and it is distributed in to the shell kinetic energy:

$$
E_{n i n}=\frac{1}{2} \frac{4 \pi}{3} \rho_{1} R^{3} v^{2}
$$

and internal energy, which mostly comes from inner cavity interior to the thin shell:

$$
\begin{equation*}
E_{\text {int }}=\frac{P_{\text {in }}}{\gamma-1} \cdot \frac{4}{3} \pi R^{3} \simeq \frac{4}{3} \pi R^{3} \frac{\tilde{q} P_{2} \gamma}{\gamma-1} \tag{M.8}
\end{equation*}
$$

$$
\begin{aligned}
& \Rightarrow E_{\text {tot }}=\frac{4 \pi R^{3}}{3}\left[\frac{1}{2} \rho_{1} V^{2}+\frac{{ }_{2} p_{2} \gamma}{\gamma-1}\right] ; \\
& \text { using M.2\&M.4: } \\
& \Rightarrow=\frac{4 \pi R^{3}}{3}\left[\frac{1}{\gamma} \rho_{l} \rho_{1}\left(\frac{2 u_{1}}{\gamma+1}\right]^{2}+\frac{\tilde{\alpha}_{2}}{\gamma-1} \frac{2}{\gamma+1} \rho_{1} u_{1}^{2}\right]
\end{aligned}
$$

now use again $U_{1}=\frac{d R}{d t}$ and $M .7 a, b=7$

$$
\begin{aligned}
& R \alpha t^{b}=t^{\frac{1}{4-3 \alpha}} \\
& \frac{d R}{d t} \propto t^{\frac{3+3+x}{4-3 x}} \propto t^{b-1}
\end{aligned}
$$

$E_{t o+} \propto R^{3} \dot{R}^{2} \propto t^{3 b} t^{2 b-2} \propto t^{0}$
But energy conservation \Rightarrow

$$
\begin{aligned}
& \text { E. tot } \alpha t^{0} \Rightarrow 5 b-2=0 \\
& \Rightarrow b=\frac{2}{5} \Rightarrow 4-3 \tilde{\alpha}=5 / 2 \\
& \Rightarrow \tilde{\alpha}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & R \propto t^{2 / 5} ; R=u_{1} \alpha t^{-3 / 5} \\
& P_{1} \propto u_{1}^{2} \propto t^{-6 / 5}
\end{aligned}
$$

I mentioned, and will dsscousser, the Rayleigh Taylor instability, whin takes place during the sedov prase. The

Radiative phase of $S N R$ blast wave
once radiative cooling time becomes short compared, to sedor age we have radiative phase. Sedor age is given by $(111 / s)$.
For cooling time, note that for $T<10^{6} \mathrm{~h}$ $C_{j} N, O$ gain e^{-}and become adamic,
cooling by atomic cascade of e^{-}fulling to lower dowels dominies:

$$
\begin{equation*}
n_{H}^{2} \wedge(T)=10^{-22} \mathrm{erg} / \mathrm{cm}^{3}-\mathrm{s} \cdot n_{H}^{2}\left(\frac{T}{10^{6} \mathrm{~h}}\right)^{-1 / 2} \tag{s}
\end{equation*}
$$

$t_{\text {cool }} \approx \frac{n k T}{n^{2} \Lambda(T)}=2 \times 10^{5}\left(\frac{T}{\left(3 \times 10^{6}\right.}\right)^{3 / 2} n_{H}^{-1}$ yr
$t_{\text {col }} L t_{\text {redon }}$ when for camilesfes region
from (1115) and (1135)

$$
T^{7 / 3}<\frac{2 \times 10^{5}}{3.5 \times 10^{4}}\left(3 \times 10^{6}\right)^{7 / 3} \frac{n_{H}}{n_{i s M^{13}}^{3 / 7}}\left(\frac{E}{10^{5} \mathrm{evg}}\right)^{1 / 3}
$$

or $T<\left(\frac{3.5 \times 10^{4}}{2 \times 10^{5}}\right)^{3 / 7}\left(3 \times 10^{6}\right)(4)^{\downarrow / 3 /\left(n_{H}^{2 / 3}\right)^{2 / 7}}\left(\frac{E}{10^{51}}\right)^{1 / 7}$
ratio ours
 condiment (see
$T<5.7 \times 10^{6} \mathrm{~K}\left(n_{H}^{2 i}\right)\left(\frac{E}{10_{\text {egg }}^{51}}\right)^{1 / 7}$
or $\quad V \simeq\left(\frac{k T}{m}\right)^{1 / 2} \leqslant 240 \cdot \frac{\mathrm{hm}}{\mathrm{s}}\left(E_{51} n_{H}^{2}\right)^{1 / 14}$
notice the weak dependence on E and n_{H} !
in radiative prase
shock becomes isothermal as it evolves.
Wot inter ion region but a cooled, iso thermal interior contr shismell: In frame of contact discontinuity: contact distr i

$$
\begin{aligned}
& \text { is M } \\
& \text { cold, fast } \\
& T_{1}
\end{aligned} \begin{gathered}
{\left[\rho_{1} v_{1}=\rho_{2} v_{2} z_{3} v_{3}\right.} \\
\Rightarrow
\end{gathered}
$$

(3)
(1)

$$
T_{3}<10^{6} \mathrm{~K} \quad T_{2}>10^{6} \mathrm{~K} \quad T_{1} \ll 10^{6} \mathrm{k}
$$

cooling takes away most of the shock energy but omentum is conserved because radiation is essentially is o tropic. Thus
 $\Rightarrow r^{3} \dot{r}=$ constant for $\frac{d g i s m}{d t} \simeq 0$. $\Rightarrow r^{3} d r=d t$
and $\quad \begin{array}{rl}r & r\end{array} t^{1 / 4}$

Fig. 4.6. The radius of the supernova shell as a function of time during the different phases.

This integrates to give

$$
\begin{equation*}
R=R_{0}\left[1+4 \frac{v_{0}}{R_{0}}\left(t-t_{0}\right)\right]^{1 / 4}, \quad \dot{R}=v_{0}\left[1+4 \frac{v_{0}}{R_{0}}\left(t-t_{0}\right)\right]^{-3 / 4} . \tag{4.107}
\end{equation*}
$$

For large $t, R \propto t^{1 / 4}$ and

$$
\begin{equation*}
\dot{R} \propto t^{-3 / 4} \simeq 200 \mathrm{~km} \mathrm{~s}^{-1}\left(t / 3 \times 10^{4} \mathrm{yr}\right)^{-3 / 4} . \tag{4.108}
\end{equation*}
$$

The time constant in relation (4.108) is fixed by equating the Sedov phase velocity of Eq. (4.101) to $200 \mathrm{~km} \mathrm{~s}^{-1}$.

In the final phase, the speed of the shell drops below the sound velocity of the ISM, which is approximately $(10-100) \mathrm{km} \mathrm{s}^{-1}$ in a time scale of $t \approx(1-5) \times 1$ $10^{5} \mathrm{yr}$. Around this time scale, the remnant loses its identity, and it is dispersed by random motions in the ISM. The evolution is shown schematically in Fig. 4.6.

It should be noted that supernova explosions and their eventual dispersion of ejected material have the effect of enriching the ISM with the material processed in stellar interiors. In particular, the heavy elements synthesised inside a start reach the ISM through this process. Because massive stars evolve at shorter time scales and also are more likely to end up as supernovas, the evolution of the firs generation of massive stars changes the character of the ISM. Second and later generations of stars condense out of this enriched ISM and will have a hight er proportion of heavier elements.

A supernova explosion c from the surrounding ISM. a gaseous nebulalike region the star in the presupernova heat and ionise such a regio an expanding luminous in from OIII was detected are from the centre of the exp Supernovas also lead to lis phenomena discussed in V_{0} two light echos were detecte approximately 1 yr after the

A supernova emits x rays material behind the shock. I from the plasma at a tempera are formed during phase 3 , a in the material with a temper; of the radiating atoms. In add remnants are also strong som spiraling in the magnetic fir Vol. I, Chap. 6, Section 6.11, electrons per unit volume is 1
then the total flux of an optic be expressed as

$$
S_{v}=\frac{G}{d^{2}} V K B^{(i+p) / 2} v^{-}
$$

Where V is the volume of the 18 numerical factor. In the (8 strongly ionised during the frozen to the plasma fluid. It fir

The energy of individual rela scansion of the volume, the e pressure of relativistic elect give $\epsilon \propto r^{-4}$. The total ene

Linear Thant of instabilities and example of convection

- Equilibrivin us Stable equilibrium- consider simple system:

ball rolling down hill.
though both positions are equitibring only second is stable. Thus (A) equitibrion is unstable to formation of (B)
- ball may incur oscillations about the stable eq-ilibrime (B) posits (corresponds to waves in a Hid system)
- To find equilibria of fluid set ∂_{t} of all quantities to zero and solve. But to find stable equilibria and instabilities one must perturb around the equilibrium and see how the perturbations evolve
- When we locked at sound waves we ignored nonlinear terms $\vec{V} \cdot \vec{\nabla} \vec{V}$ and ut found wares. Arbitrary perturbations can be conslureted from Superposition of Fourier moles for linear problem:.
- Ane common example of instability is convection when you heat water in pot, conduction transports heat first, then changing over to connection.
y system becomes conreckicly unstable when the temperature gradient from top to bottom exueds a curtain value. Transition to instability also known as bifurcation
\rightarrow as perturbatims grow, now-linearities ensue in fluids \rightarrow turbulence Linear theory rot valid for turbulence, but can be useful at least to determine which configurations can be expected to incur transition to turbulence.
\Rightarrow by considering simple systems one can gain intuition abut which systrous tend to be unstable.

Convective Instability
Consider perfect gas in hydrostatic equilibrium in unitume gravity. If z axis is chosen. such that gravity is in negative z direction then $f(z)$ \& $p(z)$ decrease with z. Consider vertical displacement of blob as shown:

$$
\left.\psi^{f(t)} p(t) \downarrow{ }^{p}\right|^{i z}
$$

where initially p and g hare same density as surroundings. External density and pressure at new position are $\rho^{\prime} \& p^{\prime}$. Pressure balance inside and outside is maintained swiftly by acoustic waves, but heat imbalance/excharge assumption takes longer when mediated by conduction. We can consider the blob to be displaced adiabatically, then let g^{*} be its new density. It $g^{*}<\rho^{\prime}$, the blob will be buoyant and continue upward, implying instability. If $\rho^{*}>\rho^{\prime}$ then the blob will tend to return, making the system stable. So we need to determine ρ^{*} / ρ^{\prime} : For adiabatic flow, $\rho^{*}=\rho\left(\frac{\rho^{\prime}}{\left(\frac{P}{p}\right.}\right)^{1 / \gamma}$
If $\frac{d p}{d z}$ is pressure gradient, we/ can substitute

$$
p^{\prime}=p+\frac{d p}{d z} \Delta z
$$

$$
\begin{array}{r}
\Rightarrow \quad \rho^{*}=\rho+\frac{\rho}{\partial P} \frac{d P}{d z} \Delta z \\
\sin \varepsilon:\left\{\left(p+\frac{d P}{d z} \Delta z\right)^{1 / \gamma}=p^{1 / \gamma}+\frac{1}{\gamma} p^{\frac{1-1}{2}} \frac{d P}{d z} \Delta z\right\}
\end{array}
$$

but for ambient medium:

$$
\begin{equation*}
\rho^{\prime}=\rho+\frac{d \rho}{d z} \Delta z \tag{125}
\end{equation*}
$$

then using $\rho=P / R T$

$$
\begin{equation*}
\Rightarrow \rho^{\prime} \rho+\frac{\rho}{p} \frac{d \rho}{d z} \Delta z-\frac{\rho}{F} \frac{d T}{d z} \Delta z \tag{126}
\end{equation*}
$$

Where $d s / d z \& d T / d z$ are density and temp gradients.
$(124) \operatorname{minus}(126)=7$

$$
\begin{equation*}
\rho^{+}-\rho^{\prime}=\left[-\frac{\left(1-\frac{1}{\gamma}\right) \frac{\rho}{p} \frac{d P}{d z}}{\left[\frac{\rho}{T} \frac{d T}{d z}\right.}\right] \Delta z \tag{1+7}
\end{equation*}
$$

$\frac{d T}{d z}$ and $\frac{d P}{d z}$ are both negative;
stable atmosphere $\left(\rho^{*}>\rho^{\prime}\right)$ requires

$$
\frac{|(B)| T}{\rho}=\left|\frac{d T}{d z}\right|<\left(1-\frac{1}{\gamma}\right) \frac{T}{P}\left|\frac{d P}{d z}\right|=\frac{\mid A) \mid T}{\rho}(128)
$$

this is Schwaraschild stability. Condition important for stellar modeling.

Note (127) can
also be whiten: $\frac{\rho^{*}-\rho^{\prime}}{\rho}=\beta^{\prime}\left[\frac{d \ln T}{d z}-\left(1-\frac{1}{\gamma}\right) \frac{d \ln \rho}{d z}\right]$

$$
\begin{equation*}
=\int \frac{d \ln \left(\frac{T}{p^{1 / /}}\right)}{d z} \tag{*}
\end{equation*}
$$

but $T=\frac{P}{\rho R}$ so equation becomes

$$
\begin{aligned}
\frac{\rho^{*}-\rho^{\prime}}{\rho} & =\frac{d \ln }{d z}\left[\frac{p^{\prime / \gamma}}{\rho R}\right] \\
& =\frac{1}{\gamma} \frac{d \ln }{d z}\left[\frac{p}{\rho^{\gamma}}\right]+\frac{1}{\gamma} \frac{d / n}{d z}\left(\frac{l}{R}\right)
\end{aligned}
$$

vanishes if adiabatic; \Rightarrow stability if $\frac{P}{\rho^{\gamma}}$ increases with z instability if p / ρ^{r} decreases with z

($\left.\rho^{*},++^{\prime}\right) \quad \rho^{\prime}, T^{\prime}, \rho^{0}$ Glub prosine $=\rho^{g} \mathrm{~T}^{\prime \prime}$ aulvent prosink $=\rho^{\prime} T^{\prime}$ if "speendentanten" buchorwo $\rho, \rho, T, T, \rho \left\lvert\, \begin{aligned} & \Rightarrow \rho^{*}<\rho^{\prime} \\ & \Rightarrow \text { insthily }\end{aligned}\right.$

$$
\rho^{H} T^{*}=\rho^{\prime} T^{\prime}
$$

So if $T^{\prime}>T^{*}\binom{$ (ssper }{ aphabatci }

$$
\begin{aligned}
& \Rightarrow \rho^{*}<\rho^{\prime} \\
& \Rightarrow \text { instability }
\end{aligned}
$$

Since Force per unit volume acting inside disfaced blob is $\left(f^{t}-\rho\right)(-g)$ equation of motion is approximately.

$$
\begin{equation*}
\rho^{*} \frac{d^{2}}{d t^{*}} \Delta z=-\left(\rho^{*}-\rho^{\prime}\right) g \tag{129}
\end{equation*}
$$

Substituting from (127)

$$
\Rightarrow \quad \rho^{*} \frac{d^{2}}{d t^{2}} \Delta z=-g\left(\frac{f}{T} \frac{d T}{d z}-\left(1-\frac{1}{\gamma}\right) \frac{\rho}{p} \frac{d p}{d z}\right) \Delta z
$$

(to lowest order in Δz : we replace f^{*} by ρ and then obtain

$$
\frac{d^{2}}{d t^{2}} \Delta z+N^{2} \Delta z=0
$$

where $N \equiv \sqrt{\frac{g}{T} \frac{d T}{d z}-\left(1-\frac{1}{\gamma}\right) \frac{g}{p} \frac{d P}{d z}}$
is the Brunt-Väisiala frequency.
For stable statitiantion blob will oscillate.

$$
\begin{aligned}
& g^{p}\left(\frac{d \ln T}{d z}-\left(1-\frac{1}{\gamma}\right) \frac{d \ln p}{d z}\right) \\
& =g^{1 / 2} \frac{d \ln \left(\frac{T}{d z}\left(\frac{1}{p^{1 / \gamma}}\right)\right.}{=\frac{g^{\prime /}}{\gamma} \frac{d \ln }{d z}\left(\frac{T^{\gamma}}{p^{\gamma-1}}\right)}
\end{aligned}
$$

In reality such motions give rise to internal $\frac{g^{\prime \prime 2}}{\gamma} \frac{d n}{d z}\left(\frac{p}{\rho^{z}}\right)$ gravity wares by disturbing the surranding medium. we ignored internal gravity waves by ignoring the effect of blobs notion on external medium. Full tratments accent for these waves when full perturbative treaturat is develuice.

Turbulence (intro)
Once instabilities case, linear theory of perturbations fail, non-linear theory is required.
consider a point in phase space at an unstable equilibrium :

if P is unstable equilibrium, then small perturbation around around P sends the system oft into an arbitrary direction of phase space. It then becomes impossible to predict the subsequent evolution phase space exactly. For fluid unstable to helvin-ttelmholtz, Rayleigh- Taylor etc. The eventual consequence of the instability is turbulence. Random velocities key which way.
haugh ustabitities lead to turbulence, it is also poss ide to produce them with random striving of a fluid at different locations.

No deterministic theory of turbulence is possible, but one can decor a theory of arrange properties. What kind of "average"?

- Volume average - good for spatially homonevers or nearly spatially homogeneous
- time average - good for temporally steady or nearly steady
- ensemble average: average over many hypothetical copies of the system having same statistical properties, but which differ in the actual values of quantities line velocity at a given space and given time
When the variation time or spatial gradient scales are large compared to fluctuating scales; then ensemble average and volume or time deeroges can be thought to be equivalent.
Note the difference between the averaging over fluid velocity fluctuations and the averaging our hanetic theory! to get the fluid equs. themselves.

$$
\begin{gathered}
\text { fluid pare } \\
\text { of sale } \\
l
\end{gathered} \rightarrow
$$

$$
\begin{aligned}
& V=V^{\prime}+\bar{V} \\
& V=W^{\prime}+\bar{V}=\tilde{V}
\end{aligned}
$$

fluid
Velocity at given location can be written
$V=\bar{V}+V^{\prime}$, where \bar{V} is mean $d V^{\prime}$
is fluctuation, By construction $\quad \overline{V^{r}}=0$.
Consider the statistical quantity $V^{\prime}(x, t) \cdot v^{\prime}(x+r, t)$. If $\vec{r}=0$, then this is $\overline{V^{2}}$ which is a measure of kinetic energy in the turbulence. But it \vec{r} is large then $\overline{v^{\prime}(x, t) \cdot v^{\prime}(x+v, t)}=0$. Thus such a correlation has sizeable values only within a range ar.. This is the correlation length. Such correlations contain information about the strength t correlation length of the turbience. A statistical theory of turbulence is one that develops equations for these correlations. Higher correlations are also often needed, ely. the 3-point correlation $\overline{v_{i}(\vec{x}) v_{j}\left(\vec{x}_{2}\right) v_{n}\left(\overrightarrow{x_{3}}\right)}$. $\begin{aligned} \partial_{t}{ }^{\frac{}{V}} & =-\overline{V-\nabla V}-\nabla P+ \\ & =-\overline{V^{\prime} \nabla V^{r}}-\bar{V} \cdot \nabla \bar{V}\end{aligned}$

$$
\begin{aligned}
& \partial_{t} V^{\prime}=-\left(v^{\prime} \cdot \nabla v^{\prime}\right) \\
& \langle V-\nabla V\rangle=\overline{V-\nabla V} \\
& =\overline{\bar{V} \cdot \nabla \bar{V}}+\overline{N^{\prime} \cdot \nabla \bar{V}} \\
& +\overline{v^{*} \cdot \nabla v^{v}}+\overline{v^{\prime+}+v^{2}} \\
& \overline{V^{0} \cdot \nabla \bar{V}}=\nabla \bar{V} \underbrace{\overline{V^{\prime}}}_{=0}
\end{aligned}
$$

standard averaging procedure employs "Reynolds Rules".

$$
\begin{aligned}
& \left\langle v^{\prime}\right\rangle=0 \\
& \overline{\bar{v}}=\langle\bar{v}\rangle=\bar{v} \\
& \left\langle\bar{v} v^{\prime}\right\rangle=\bar{v}\left\langle v^{\prime}\right\rangle=0 \\
& \begin{aligned}
\partial_{i}\left\langle v_{i}^{\prime} v_{j}\right\rangle= & \left\langle\partial_{i} v_{i} v_{j}\right\rangle \\
& +\left\langle v_{i} \partial_{i} v_{j}\right\rangle
\end{aligned}
\end{aligned}
$$

Cores statidiad theories of turbulence involve
many approximations: Closure problem: differential quations for in -point correlations depend on $(n+1)$-point correlations and in general an, approximation is needed to close the equations.
Even a simple problem lithe conicctively unstable fluid heated from below with top and bottom temperaturs given does not hake Known rigorous solution for $\overline{V_{i}(\vec{x}) V_{j}(\vec{x}+\vec{r})}$. The statement that "turbulence is an unsoled problem in physics" mans that we do not Jet vadestans how to calculate n-point correlations from a fundamental theory.

Kinematics of Homogeneos Isotropic Incompressible Turbulence: In this simple limit we can derive same properties of turbulence from symmetry:
First, note that 1.0 mean; flow violates, isotropy so we set it to zero and thus $\vec{V}=\overrightarrow{\vec{V}}+\vec{V}^{\prime}=\vec{V}^{\prime}$.
second, homogenity requires $\overline{V_{i}(x)} V_{j}(x+\vec{r})$ is independent [$\vec{x}, \frac{\text { depending only on } \vec{r} \text {. This we write }}{V_{i}(x) V \cdot(\vec{x}+\vec{r})}=R_{i j}(|r|) \quad$ w her

$$
V_{i}(x) V_{j}(\vec{x}+\vec{r})=R_{i j}(|r|)
$$

then $\frac{\partial R_{i j}}{\partial r_{j}}=V_{i}(x) \frac{\partial V_{i}(\vec{x}+\vec{r})}{\partial r_{j}}=0$
'assuming $\underset{\text { incomperssibté.: }}{\vec{\nabla}} \cdot \vec{V}=0$. Since $R_{i j}$ depends
only on $|\vec{r}|, \quad R_{i j}=R_{j i}$

$$
\begin{aligned}
& \text { (Wa tiv, } \begin{aligned}
& V_{i}(\vec{x}) V_{j}(\vec{x}+\vec{r})\left.=\overline{V_{j}(x) V_{i}(x+\vec{r})}\right), \\
&=\overline{V_{i}(\vec{x}-\vec{r}) V_{j}(\vec{x})} \\
& \text { then } \quad=\overline{V_{i}\left(x^{\prime}\right) V_{j}\left(\vec{x}^{\prime}+\vec{r}\right)} \\
&=\overline{R_{i j}(x) V_{j}(x+\vec{r})} \\
& \frac{R_{j}}{\partial r_{j}}=\frac{\partial R_{j i}}{\partial r_{j}}=0 .
\end{aligned}
\end{aligned}
$$

Non Kamań \& Howarth (1938) showed that the most general tensor function $R_{i j}(r)$ is then

$$
\begin{equation*}
R_{i j}(r)=A(r) r_{i} r_{j}+B(r) \delta_{i j} \tag{170}
\end{equation*}
$$

consider longitudinal and lateral velocity corelation functions:

Since long, itedincel component of \vec{r} is $r_{l}=r$ and normal component of \vec{r} is $r_{n}=0$, we have

$$
\begin{align*}
& R_{l l}(r)=A(r) r^{2}+B(r)=\frac{1}{3} \bar{r}^{2} f(r) \tag{171}\\
& R_{n n}(r)=B(r)=\frac{1}{3} \overline{r^{2}} g(r) \tag{172}
\end{align*}
$$

If $f(r)$ \& $g(r)$ are defined such that $f(0)=g(0)=1$. (at $r=0$).
We can then express A(r), B(r) in (170) using $(|7|),(172)$, in terms of $f(r), g(r)$:

$$
R_{i j}=\frac{1}{3} \bar{r}^{2}\left[\frac{f(r)-g(r)}{r^{2}} r_{i} r_{j}+g(r) \delta_{i j}\right]
$$

$$
g(r)=f(r)+\frac{1}{\partial} r \frac{d f}{d r} \quad-\underbrace{\frac{d r}{d r}} \frac{d_{1}}{d_{r}} \frac{r_{5}}{r} \text { anductidy } b_{y} r_{j}=0
$$

tues if we can determine $f(r)$, we can get all components of the correlation tensor $R_{i j}$. Since $f(r)$ is the longitudinal correlation function, we expect it to have a braying form

Consider the forrier transform of
$R_{i j}: \phi_{i j}(\vec{k})=\frac{1}{(2 \pi)^{3}} \int R_{i j}(r) e^{-i \vec{k} \vec{r}} d^{3} r$
Sime $R_{i j}$ is spterially symathic in \vec{r},
$\phi_{i j}$ must be splerimilly symurter in \vec{k}
so write $\phi(\vec{k})=\phi(k)$. note " + " sign
Then

$$
\begin{equation*}
R_{i j}(r)=\int \phi_{i j}(k) e^{+i k \cdot \cdot} d^{3} k \tag{174}
\end{equation*}
$$

Incompressibility $\frac{\partial R_{i r}}{\partial r_{j}}=\frac{\partial R_{j i}}{\partial r_{j}}=0$ requines; at each k

$$
\begin{aligned}
& \text { ICompressibility } \quad \frac{\partial k_{i j}}{\partial r_{j}}=\frac{\partial k_{j i}}{\partial r_{j}}=0 \quad \text { requhes; at each } k \\
& \Rightarrow k_{i} \phi_{i j}=k_{j} \phi_{i j}=0 \quad \partial_{i} R_{i j}=i \int k_{i} k_{i j} e^{i k_{i} \cdot \stackrel{\rightharpoonup}{r}} 3 k
\end{aligned}
$$

syonnethy considerations then requite (e-g. Mctomb
"physis of Fhid

$$
\phi_{i j}(k)=\left((k) k_{i} k_{j}+D(k) \delta_{i j} \text {, where } k_{i} \phi_{i j}=0\right.
$$

$$
\left.\Rightarrow D(k)=-c(k) k^{2}, \quad(\text { datmes } \mathrm{El}, \mathrm{k})\right)
$$

then

$$
\phi_{i j}(k)=\frac{E(h)}{4 \pi k^{4}}\left(h^{2} \delta_{i j}-k_{i} k_{j}\right)
$$

signiticance is that

$$
=-c(k)\left(h^{2} \delta_{i j}-k_{i} n_{j}\right)
$$

$$
\begin{equation*}
\frac{1}{2} \overline{v^{2}}=\frac{1}{2} R_{i i}(0)=\frac{1}{2} \int \phi_{i i}(k) d^{3} k \tag{176}
\end{equation*}
$$

using (174).

$$
\phi_{i i}=\frac{E(k)}{4 \pi k^{*}}\left(3 k^{2}-h^{2}\right)=\frac{2 E(n)}{4 \pi k^{2}}
$$

So using (175) in (176) and writing

$$
\begin{aligned}
& \quad d^{3} k=4 \pi h^{2} d k \text { gives } \\
& \Rightarrow \frac{1}{2} \bar{r}^{2}=\int_{0}^{\infty} E(k) d k=\frac{1}{2} \int_{0}^{\infty} \frac{2 E(h)}{4 \pi h^{2}} \cdot \widetilde{4 \pi h^{2} d k \quad(177)} \\
& E(h)=\frac{d E \text { very }}{d k}
\end{aligned}
$$

Thus $E(K)$ is the energy spectrum of the turbicienie. Just as B-body spectrum is composed of contributions at different wavelengths, turblemes can be thought of as being composed of contributions of different fourier components.
Note that $f(r)$ and $E(x)$ are unspecified and are related such that only one is independent. We have not said anything about the form of $E(h)$, that is where Kolwogoror theory, fits in

Kulimagorov Equilibrium Theory
A turbulent fluid can be maintained in a sady.state only it energy is Continuously fed into system.
Reason is viscous dicipdtion \rightarrow left alone, turbulent energy will andre to hat. If the fluid is stirred, whet turbulent flow is statically homogeneous \& isotropic. then steady state can ensue, and system is in statistical equilibrivan. Kolmogorov (1^41). calculated the energy spectrum for such trobrence.

Imagine the driving (or forcing) to occur on some scale ℓ, inducing velocity V. Kolmogorar intuited that the the turbulent parcels (or eddies) of would feed energy to smaller scales, which then fed energy to still station scales. To see how this cascade process, consider incurplis. turbutale.

Let $P \nsubseteq Q$ be two ford elements on
a vortex tube as shown, with diameter l :

Acordiveg to Kelvin's theorem vorticity is conserved, or carried with the flow, (egg. $\frac{d}{d t} \int w \cdot d \vec{s}=0$ So that $\int \vec{w} \cdot \vec{s}=$ constant, as denied earlier)
Then, l stare, statistically speaking, two points in the turbulent flow tend to separate with time, the vortex tube will lengthen as the points separate, still mantanion the coherence of the tube. But incompressibility, requires Hat the the lengthened tube contract: fixed density means fixed mass for given volume. stretching the tube in length requires decreasing the cross section. to maintain the same density for the same mass of material: thus
 constant $\begin{gathered}\text { volume }\end{gathered} T(l / 2)^{2} L=$ constant $\Rightarrow l \sim L^{-1 / 2}$
the continuous shrinking rif the vortex tubes cannot continue forever because eventually viscus term. $\rangle \nabla^{2} \vec{V}$ becomes important in the Navter-stones equation. That is the conditions for
$(V . \nabla V)$ vo r
 Scales (large enough gradients), and vorticity $=\frac{V_{d} l_{d}}{D}$ is dissipated. Another way of saying this $=R_{e, d}$
is that the Reynolds number for the smallest $=1$ since eddies is of order il: $R_{d} \simeq \frac{\ell_{d} V_{2}}{D}=1$ its $\operatorname{Re}\left(\ell=\ell_{\mathrm{d}}\right)$
Whereas $R_{0}=\frac{L V}{V}>1$, where subscript d refers to dissipation scale, and R_{0} is the nd Reynolds number for the largest sate (or "outer"scale) of length L \& velocity V.
so the idea is that vortex energy is input at scale L with velocity V; it then cascades to scale l_{d} where it is dissipated into random particle energy (heat).
In steady state energy input rate must. equal energy dissipation rate \rightarrow

$$
\begin{aligned}
& \partial_{t} \vec{v}_{j}=-\vec{v} \cdot \vec{\nabla} \vec{v}_{j}-\nabla \rho+\nu \nabla^{2} \vec{v}_{j} \\
& \vec{v}_{j} \partial_{t} \vec{v}_{j}=-\vec{v}_{j} \cdot \vec{v}-\nabla \vec{V}_{j}+\nu \vec{v}_{j} \nabla^{2} \vec{v}_{j}+\langle f(t, p)\rangle \\
& \rangle \\
& \left.\frac{1}{2}\left\langle\partial_{t} \mid v^{2}\right\rangle=-\overrightarrow{\left(v_{j}\right.} \vec{v} \cdot \nabla V_{j}\right\rangle+\left\langle\Delta v_{j} \nabla^{2} v_{j}\right\rangle_{+}
\end{aligned}
$$

Steady state $\left(\right.$ for scutes $l \gg l_{d}$ A dominate

$$
\frac{V^{3}}{l} v \frac{v}{l} \cdot v^{2}
$$

the cascade
if you force with $f(l, t)$ sit. $l_{f} \gg \ell_{d} \Rightarrow>$
term (A) will dominate energy cascade until you reach

$$
l=l_{d}
$$

$$
l_{f} \geq l \geq \ell_{d}
$$

and this energy transfer rate will be
the same at all scales in a study state if energy per unit mass, dimensional ansis leads For transfer is "loon"
$\frac{d \varepsilon}{d t}=\frac{V_{l}^{3}}{l}$ at scale l with velocity V_{e}

and $V_{d} e_{d}-V$ we have, using $R_{e} \equiv \frac{L V}{V}$

$$
\begin{aligned}
& L^{4} V^{3}=\frac{V^{3 /} L^{4}}{l_{d}^{4}}=R_{R}^{3}=\frac{L^{4}}{l_{d}^{4}} \text { or } \frac{L}{l_{d}}=R_{e}^{3 / 4} \text { or } \frac{K_{d}^{4 / 3}}{K_{L}^{4 / 3}}=R_{e} \\
& J^{3} L^{2} \\
& \text { thus the Reynolds number determines the }
\end{aligned}
$$ ratio of largest to smallest sades in the cascade. this range of scales is called the inertaldrange

To get the energy spectrum, one just USES $\frac{V_{e}^{3}}{l}$ constant

$$
\Rightarrow V_{l} \propto l^{1 / 3} \Rightarrow V_{l}^{2} \alpha l^{2 / 3} \text { and } l-k_{l}^{-1}
$$

thus $V_{l}^{2} \propto k^{-2 / 3}$

$$
\begin{aligned}
& \sum^{\nu} \nabla^{2} V_{d} \simeq\left\langle V_{d} \nabla V_{d}\right\rangle \\
& \nu \frac{V_{d}}{\ell_{d}^{2}} \simeq \frac{V_{d}^{2}}{l_{d}} \\
& \Rightarrow \nu \simeq V_{d} l_{d} \\
& c_{s, i}^{11} \lambda_{\text {antp }}
\end{aligned}
$$

now heretic energy: density permass V^{2} around wavenumber K is $E(K) d K \sim E(h) K$ then $V_{e}^{2}=E\left(K^{2} K \propto k^{\sim \alpha / 3}\right.$
this is the Kolnogoror spectrum.
It applets for the inertial range:

$$
\Rightarrow-2 / 3
$$

$$
k_{\text {min }} \approx k_{f}
$$

$k_{v}, k_{\nu_{m}}$

$$
P_{m}=\left(\frac{R_{M}}{R_{e}}\right)=\frac{\nu}{V_{m}}
$$

$$
\supset
$$

$V\left(\ell_{v}\right)$ creates
$B\left(l_{m}\right)$ with $\ell_{m} \ll \ell_{r}$

$$
\Rightarrow \text { nolocal }
$$ transfer:

some ronlocul energy is possible in MHD when Prom >1

Trublent Diffusion (part 1)
Although homogeneous isolvepre twiblence is Simplest, real systems have inhomogenitios.
Turbulenu affects transport, and the simplest effect is turbulent diffusion:
If you put sugar in coffee and do not stir, mixily pow big motedar process and takes a long fine. Rut if stand, the coffee becomes turbulent and - mixing occurs more quickly

Suppose markers are introduced in fluid at $t=0$. Displacement of marker after time $t=T$ is $\quad \vec{x}(T)=\int_{0}^{T} \vec{V}(t) d t$
where $\vec{V}(t)$ is fluid velocity at time t.

The mean
displacement averaged over all markers must vanish, for a volume fixed in.

Space (eg. the cottre cup) but the mean squared displacement does not vanish.

$$
\begin{equation*}
\overline{X^{2}(t)}=\int_{0}^{T} d \tau \int_{0}^{T} d t \overline{\vec{V}}(t) \cdot \vec{V}(\tau) \tag{181}
\end{equation*}
$$

where $\vec{V}_{i}(t) \cdot \vec{V}(\tau)$ is the velocity correlation function for velocities at two different times, but at fixed position. In stand state this must depend only on $t-\tau$, so we write

$$
\begin{equation*}
\vec{V} \cdot(t) \cdot \vec{V}(\tau)=\overline{V^{2}} R(t-\tau) \tag{182}
\end{equation*}
$$

note $R(0)=1$. We also assume symmetry: (zstatitstint stand state $)$ $R(t-\tau)=R(\tau-t)$. We expect turbulence to have some correlation time $\tau_{\text {cor }}$ such that $R(\tau)$ is only substantially finite of $\tau<\tau_{\text {cor }}$ ($\tau_{\text {cor }}$ is typically an eddy turnover time, $\frac{l_{\text {cor }}}{V}$) using (182) in $(181) \Rightarrow$

$$
\begin{equation*}
\overline{X^{2}(T)}=\int_{0}^{T} d t \widehat{V}^{2} \int_{0}^{T} d \tau R(\tau-t) \tag{183}
\end{equation*}
$$

Consider TLL Error: then

$$
\begin{align*}
& R(t-t)=\frac{1}{X^{2}(T)}=\sigma^{2} T^{2}
\end{align*}
$$

as expected. But for $T \gg$ Tor statistical effects of turbulence emerge:
In this limit, we can charge integration. bounds to $-\infty$ and $+\infty$ (since away from terr the in is little contrition)

$$
\begin{equation*}
\overline{X^{2}(T)}=\int_{0}^{T} d t \overline{V^{2}} \int_{-\infty}^{\infty} d \tau R(\tau-t) \text { we can choose } \tag{185}
\end{equation*}
$$

then writing $D_{T}=\frac{1}{3} \int_{0}^{\infty} \quad t=0$ $t=0$ and assuming $\overline{V^{2}}$ is independent of time at space

$$
\begin{equation*}
\widehat{X^{J}(T)}=6 D_{T} T \tag{186}
\end{equation*}
$$

(where $6=2.3$ and the 2 comes sham $\int_{-\infty}^{\infty} \rightarrow 2 \int_{0}^{\infty}$)
Now we argue that D_{T} can be thought of as a diffusion coeftiont

diffusion (continued)
Let $n(\vec{x}, \vec{t})$ be the density of murders.
If the dispersion of markers is diffusive, then $n(\vec{x}, t)$ should satisfy

$$
\begin{equation*}
\frac{\partial n}{\partial t}=D \nabla^{2} n \tag{187}
\end{equation*}
$$

where D is the diffusion coefficient.
We now prove that $D=O_{T}$:
If markers are introduced near the origin such that evolution is basically spherically segmatric, then

$$
\begin{equation*}
\bar{X}^{2}(t)=\frac{\int_{0}^{\infty} r^{2} n(r, t) 4 \pi r^{2} d r}{\int_{0}^{\infty} n(r, t) 4 \pi r^{2} d r}= \tag{A}
\end{equation*}
$$

Then using (187) $\partial_{t} n=$

$$
\begin{equation*}
\frac{\partial}{\partial t} \int_{0}^{\infty} r^{2} n 4 \pi r^{2} d r=D \int_{0}^{\infty} \frac{z}{\partial r} \underbrace{\partial r}_{=r^{2}\left(r^{2} r_{0}\right.} \frac{\partial n}{\partial r}) 4 \pi r^{2} d r \tag{181}
\end{equation*}
$$

$$
=r^{2 r} r^{2} \frac{D^{2} n}{2 r}=-D \int 8 \pi \pi^{3} \frac{3 n}{d r} d r
$$

integrating right side by parts twice:

$$
\partial_{t} \int_{0}^{\infty} r^{2} n 4 \pi r^{2} d r=60 \overbrace{\int_{n} n 4 r^{2} d r}^{\alpha \text { mass }}
$$

$$
\begin{aligned}
& =D \int 24 \pi r^{2} n d r \\
& =6094 \pi r^{2} n d r
\end{aligned}
$$

or

$$
=\int_{0}^{\infty} r^{2} n 4 \pi r^{2} d r=60 t \int_{T_{\text {(for cadenced muss) }} 4 \pi r^{2} d r}
$$

thus (188) then implies
$\overline{X^{2}(t)}=60 t$ spice

$$
\begin{equation*}
\frac{x^{2}(t)}{x^{2}}=\frac{\int r^{2} n 4 \pi r^{2} d r}{\int n 4 \pi r^{2} d r} \tag{191}
\end{equation*}
$$

just as in (186) so $D=O_{T}$ for $t=T$

$$
\begin{align*}
& \text { and thus } D_{T} \approx \frac{x^{2}(t)}{6 T}=\frac{1}{3} \nabla^{2} \int_{0}^{\infty} R(\tau) d \tau \\
&=\frac{1}{3} \overline{V^{2}} \tau_{\text {corr }}=\overline{V^{2} \tau_{\text {cor }}} \\
& V \tau_{\text {cur }} \approx l_{\text {cor }} \\
&=\frac{1}{3}\left|V \| \ell_{\text {corr }}\right|
\end{align*}
$$

Note that this coefficient dies $V a l^{1 / 3}$ not depend on egg. temperature or $0_{T} \sim l^{4 / 3}$ density unlike the molecular transport coefficients. This is because in the molecular case forsexample, molecules carruig wove thermal energy move faster. For turbulent fluid transport however, the temperature does not have a direct influence on the turbulent velocity when the turbulent velocities are mechanically driven externally (egg. the ate of sugar transport by turbulence in coffee does not depend on cotter temperature when externally stirred).

However, if the quantity transported Lan backract on the turbulence, the turbulent diffusion ceetficiont con change.
Mean Fiche Equations:
How does turbulent viscosity affect Napier stakes equations?
For an incompressible flow the $N \varepsilon$ eqn is

$$
\begin{equation*}
\frac{\partial}{\partial t}\left(\rho v_{i}\right)=\rho F_{i}+\frac{\partial}{\partial x_{j}}\left(-p \delta_{i j}-\rho v_{i} v_{j}+\mu \frac{\partial v_{i}}{\partial x_{j}}\right) \tag{143}
\end{equation*}
$$

Now to apply to turbulent flow, follow $\bar{\rho}=\rho$ Reynolds (1895) and break velocity, pressure a force into mean and fluctuating parts: $V_{i}=\bar{V}_{1}+V_{i}^{\prime} ; p=\bar{p}+p^{\prime}$ $F_{i}=\bar{F}_{i}+F_{i}$. Substitution into (193) and taking areviqe goes: (an dosing Reynolds cues $\begin{aligned} & \langle\bar{v}\rangle=\bar{v} ;\langle\bar{v} r\rangle=\bar{v}\left\langle v^{\prime}\right\rangle=0\end{aligned}$

$$
\frac{\partial}{\partial t}\left(\rho \bar{v}_{i}\right)=\rho \bar{F}_{i}+\frac{\partial}{\partial x_{i}}\left(-\bar{p} \delta_{i j}-\rho \bar{v} \bar{v}_{i} \bar{v}_{j}-\rho \overline{v_{i}^{\prime} v_{j}^{\prime}}+\mu \frac{\partial \bar{v}_{i}}{\partial x_{j}}\right)
$$

(where we used $\left.\rho \overline{V_{i} V_{j}}=\rho\left(\bar{v}_{i} \bar{v}_{j}+\overline{V_{i}^{v} v_{j}^{\prime}}+\overline{V_{i}^{\prime} \bar{v}_{j}}+\overline{V_{V}} \overline{\bar{v}}_{j}\right)\right)$,
(194) is the Reynolds Equation.

Note its similarity to (193) except for rephament of \vec{V} by $\vec{\nabla}$ and the extra term $\overline{V_{i}^{\prime} V_{j}^{\prime}}$. This is an important term however, and is called the Reynolds stress. Note however that it leads to complications? One possibility for dealing with it is to

then substituting for $\frac{\partial V_{j}^{\prime}}{\partial t}$ and $\frac{\partial V_{i}^{*}}{\partial t}$ by Substracting (194) from (193). However, this will then produce triple covelations: $\overline{V_{i} V_{j}^{\prime} V_{k}^{\prime}} \rightarrow$ trying to deal with this triple in the sane way as the double leads to 4 th order corrtations etc. This is the closure problem. Since one effect of turbulence is to provide enhanced transport (as discussed in terms of D_{T})
The simplest and most naive closure is to
(194a) write the Reynolds shess as $\begin{aligned} \overline{V_{i}^{\prime} V_{j}^{\prime}} & =-D_{T}\left(\frac{\partial \bar{V}_{i}}{\partial x_{j}}+\frac{\partial V_{j}}{\partial x_{i}}\right)\end{aligned}$
this means that we have; for (194)

$$
\begin{align*}
& \frac{\partial}{\partial t}\left(\rho \vec{v}_{i}\right)=\rho \bar{F}_{i}+\frac{\partial}{\partial x_{j}}\left(-\bar{p} \delta_{i j}-\rho \vec{v}_{i} \bar{\sigma}_{j}+D_{T}\left(\frac{\partial \bar{v}_{i}}{\partial x_{j}}+\frac{\partial \bar{v}_{j}}{\partial x_{i}}\right)+\mu \frac{\partial \bar{r}_{j}}{\partial x_{j}}\right) \\
& e^{4 / 5} \tag{195}
\end{align*}
$$

Since μ is the microplysical viscosity we can see that D_{T} acts in a simitar way and is typically much langer than μ since $\mu=\frac{1}{3} v_{n+1} l_{\text {mate }}$ and $D_{T}=\frac{1}{3} T l_{T}$ and $l_{T}>l_{m f_{p}}$ for wide range of $v_{t h}$. note also that the diffuse native of transport is reflected by a diffusion coefficient multiplying two spatial derivatives. For D_{T} independent of space, its term becomes in (195)

$$
\begin{aligned}
& \text { its term becomes in (195) } \\
& D_{T} \nabla^{2} \nabla_{i}+D_{T} / \frac{Q \vec{\nabla} \cdot \bar{v}}{\partial x_{i}} \text { and for ser flow }
\end{aligned}
$$

for incompressible \bar{V}, the second Herm vanishes So the closure $[194 a)$ is a turbulent ditfosion closure to the Navies - States eqn. It works well in many cases.

$$
\begin{aligned}
& \left\langle V_{i}{ }^{r} V_{j}^{r}\right\rangle^{(0)}=D_{T}^{(0)}\left(\partial_{i} \bar{V}_{j}+\partial_{j} \bar{V}_{i}\right) \\
& \left\langle V_{i}^{(0)} V_{j}^{\prime}(1)\right\rangle+\left\langle V_{i}^{\prime(1)} V_{j}^{\prime(0)}\right\rangle \\
& D_{T}^{(0)}=\left\langle V_{i}^{(10)} \cdot V_{i}^{(0)}\right\rangle \tau_{c}
\end{aligned}
$$

$V^{\prime(0)}$ is fluctuation velocity to coth order in mean fields. This "base state" of the turbulence is nomojeners and isotropic by assumption

$$
\begin{aligned}
& \left\langle V_{i}^{0} \cdot V_{i}^{\prime}\right\rangle(t) \neq \\
& \left\langle V_{i}^{\prime(0)} \cdot V_{i}^{(0)}\right\rangle(t)
\end{aligned}
$$

$$
\begin{aligned}
& \vec{E}=-\vec{V} \times \vec{B}+\eta \bar{J} \\
& \vec{E}=\langle E\rangle+E^{\prime} \\
& \vec{V}=\langle v\rangle+v^{\prime} \\
& J=\langle J\rangle+J^{\prime} \\
& \Rightarrow \\
& \langle E\rangle=-\bar{V} \times \bar{B}-\left\langle v^{\prime} \times B^{\prime}\right\rangle
\end{aligned}
$$

$+n\langle F\rangle$ ignove

Hydrodynamics and Rotation

Newer io consider rotating fluids, since most astrophysical objects have f momentum.

Most astrophysical rotators poses differential rotation: two reasons:
(1) viscosity may not be able to act fast enough te smooth out differentia rotation
(d) some physical mechanism present to maintain diff rotation.
Consider centrifugal force in rotating body:
Assime axisymmetvic steady rotation: $\Rightarrow \partial_{t}=0, \partial_{g}=0$ and $V_{r}=0$, in the r-component of Naver-3lohes equation in Glindrial coordinates (See Appendix of Shuior Chodhui)

$$
\begin{equation*}
-\frac{V_{\phi}^{2}}{r}=g_{r}-\frac{1}{\rho} \frac{\partial p}{\partial r} \tag{196}
\end{equation*}
$$

when pressure support is unimportant (egg. Thin ace dishes)
$V_{\phi}=\sqrt{\text { Part }^{\prime}}$; centrifugal force balances grave.

$$
\Rightarrow
$$

in stars, pressure is not negligible, so a balance of rotation $\&$ pressure balames gravity. In geneal the rotation is differential because of of (1) the gravitational force law (2) the ineffectiveness of mirrophysical viscosity to make the flow uniform and (3) the fact that turbulent "Viscosity" in rotating systems, although much stronger than mierophysinal viscosity may not shongenough and because turbulent visosily can be highly anisotropic in rotating flows and contribute to sustaining diff rotation as in the solar convection zone

Rayleigh criterion: not all diff. rot flows ave stable:
Consider fluid annulus at distance r_{0} from axis rotates with velocity v_{0}, and this ring is interchanged with ring at $r_{1} \geqslant r_{0}$ rotating with $v_{\text {, }}$ system is stable when displaced ring reacts to return to original position.
conserving x momentum, ring displaced to r_{1} acquires velocity $V_{1}^{\prime}=\frac{V_{0} r_{0}}{r_{1}}$. The centritual acceleration at this new position is then $\frac{V_{0}^{2} r_{0}^{2}}{r_{1}^{3}}$, whereas a ring a equitibrian at r_{1} would be $\rightarrow \frac{v_{1}^{2}}{r_{1}}$. Thus if

$$
\begin{aligned}
V_{0}^{2} r_{0}^{2} \\
r_{1}^{22}
\end{aligned} \frac{V_{1}^{2}}{r_{1}} \quad \begin{array}{ll}
V_{0} & =\Omega_{0} r_{0} \\
V_{1} & =\Omega_{1} r_{1}
\end{array} \quad(197)
$$

the system is stable and ring will return to original radius. When the inequality is not satisfied, system is unstable to turbulence. Eq (197) can also be written

$$
\begin{align*}
& \left(r_{0}^{2} \Omega_{0}\right)^{2}\left\langle\left(r_{1}^{2} \Omega_{1}\right)^{2} \quad\right. \text { or } \\
& \left.\frac{d}{d r}\left|\left(\Omega r^{2}\right)^{2}\right|\right\rangle 0 \tag{198}
\end{align*}
$$

Rayleigh's criterion for stability

In astrophysics typically:

$$
\Omega r=V \simeq\left(\frac{G M}{r}\right)^{1 / 2}
$$

$\Omega r^{2} \propto r^{1 / 2} \Rightarrow$ mom per unit
mass for rotationally
Supported flow against gravity has
\& mom mass increasing $\begin{gathered}\text { outward }\end{gathered}$
\Rightarrow Rayleigh Stable

Derivation of Javier stokes in se Goldatin Rotating frame: (egg. kagyama a-mathis! notating frame. Hyodo 2006

- Most texts do "Lagrangian" approach which hides details and is not as generally useful
- Lets do Eulerian approach; focus. on incompressible flow for now

$$
\partial_{t} \vec{u}+(\vec{u}: \vec{\nabla})=\vec{f}=-\vec{\nabla} \rho-\vec{\nabla} \phi+\nu \vec{\nabla}^{2} \vec{u}
$$

Consider the role of both losing \vec{u} here

- Galilean transformation
- time dependent rotation of cords.

Start with sabilear trousformation of vector between inertial frames L_{I} and L_{I} :

$$
\begin{aligned}
\vec{x}^{\prime} & =\vec{x}-\vec{V} t & & \vec{x}^{\prime} \varepsilon L_{I}^{\prime} \\
d x^{\prime} & =d x & & \vec{x} \varepsilon L_{I}^{\prime}
\end{aligned}
$$

For only vector $\vec{a}(\vec{x}, t)$ in L_{I},

$$
\vec{a}^{\prime}\left(\vec{x}^{\prime}, t\right)=G^{v} \vec{a}(x, t)=\vec{a}\left(G^{v} x, t\right)
$$

Where $G *$ is Salibear operator.

$$
\underset{\text { flow velocins }}{\varepsilon-g \therefore} \vec{u}^{\prime}\left(x^{\prime}, t\right)=G^{v} \vec{u}(\vec{x}, t)=\vec{u}(x, t)-\vec{v}
$$

- Fr vector function of a vector:

$$
\vec{F}^{\prime}\left(\vec{a}^{\prime}\right)=G^{v} \vec{F}(\vec{a}, t)=\vec{F}\left(G^{v} \vec{a}, t\right)
$$

- So ecg.: if $\vec{F}=\vec{u} \cdot \vec{\nabla} \vec{u}$:

$$
\begin{align*}
& \text { So e, g. ? } \tag{1}\\
& \vec{u}^{\prime} \cdot \vec{\nabla}^{\prime} \vec{u}^{\prime}=G^{\prime}(\vec{u} \cdot \vec{\nabla} \vec{u}) \equiv(\vec{u}-\vec{v} t) \cdot \vec{\nabla}(\vec{u}-\vec{v} t)
\end{align*}
$$

(where $\vec{\nabla}^{\prime}=\overline{\vec{\nabla}}$ for Galilean transformation

$$
\begin{aligned}
& =\nabla \quad \text { for } G \text { aliteal tran } \\
& \text { since } \left.\frac{\partial}{\partial x_{i}^{\prime}}=\frac{d x_{j}^{\prime}}{d x_{i}} \frac{\partial}{\partial x_{j}^{\prime}}=\delta: 5 \frac{\partial}{\partial x_{j}}=\frac{\partial}{\partial x_{i}^{\prime}}\right)
\end{aligned}
$$

Next: rotational transformation Let \tilde{L}_{R} be rotating frame with constant angular velocity Ω w.r.t. L_{I} with same origin, and rotation about z axis:

$$
\vec{\Omega}=(0,0, \Omega)
$$

- coords of \vec{x} and \hat{x} related by

$$
\begin{equation*}
\hat{x}=R^{\Omega t} \vec{x} \tag{1a}
\end{equation*}
$$

where

$$
R^{\Omega t} \equiv\left(\begin{array}{ccc}
\cos \Omega t & \sin \Omega t & 0 \\
-\sin \Omega t & \cos \Omega t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- A point p fixed in rotating frame \hat{L}_{R}, is seen with circular trajectory in L_{I}
- consider positions ob P in inertial frame L_{I} at two times $t+\Delta t$

$$
\begin{aligned}
& t+\Delta t \\
& \Rightarrow \quad \hat{x}_{p}=R^{\Omega(t+\Delta t)} \vec{x}_{t+\Delta t}=R^{\Omega t} \dot{x}_{t}
\end{aligned}
$$

since inverse to $R^{\Omega t}$ is $R^{-\Omega t}$:

$$
\vec{x}_{t+\Delta t}=R^{-\Omega \Delta t} \vec{X}_{t} \text {, which (la) }
$$

to lowest order in Δt

$$
\begin{align*}
& \Rightarrow \quad \vec{x}_{t+\Delta t}=\vec{x}_{t}+\Delta t \vec{\Omega} \times \vec{x}_{t} \tag{2}
\end{align*}
$$

\Rightarrow point P is moving at instantaneous velocity $\overrightarrow{\Omega \times \vec{x}}=-\vec{x} \times \vec{\Omega}$

- Consider a vector $\vec{a}(x, t)$ defined in frame L_{I}. If another frame $L_{ \pm}^{\prime}$ mores with velocity $\Omega x \vec{x}_{p}$; where \vec{x}_{ρ} are coordinates of P in L_{I}, then

$$
\vec{a}^{\prime}\left(\vec{x}_{p}^{\prime}, t\right)=G^{v} \vec{a}\left(x_{p}, t\right), w \vec{v}=\Omega x \vec{x}_{p}
$$

- Now the components of $\vec{a}^{\prime}\left(\vec{x}_{8,}^{\prime}, t\right)$ and $\hat{a}\left(\hat{x}_{p}, t\right)$ in the rotating frame are related by $\vec{a}^{\prime}\left(x_{p}^{\prime}, t\right)$

$$
\hat{a}\left(\hat{x}_{p,} t\right)=R^{n t} \widetilde{G}_{\vec{v}}^{\vec{a}\left(\vec{x}_{p, t}\right)}
$$

 at every position \hat{x} in L_{R} then,

$$
\begin{align*}
& \hat{a}(\hat{x}, t)=R^{\Omega t}\left(G^{\Omega \times \vec{x}} \vec{a}(\vec{x}, t)=R^{\Omega t} \vec{a}^{\prime}\left(\vec{x}^{\prime}, t\right)\right. \\
& \Rightarrow \hat{u}(\hat{x}, t)=R^{\Omega t}(\underbrace{\vec{u}(\vec{x}, t)-\vec{\Omega} x \vec{x})}_{u^{\prime}\left(\vec{x}^{\prime}, t\right)} \quad(3) \tag{3}
\end{align*}
$$

- Apply to $(\hat{U} \cdot \hat{\nabla}) \hat{u}$:

$$
\begin{aligned}
& (\hat{u} \cdot \nabla \hat{u})=R^{\Omega t} G^{\vec{\jmath} \times \vec{x}}(\vec{u} \cdot \vec{\nabla}) \vec{u} \\
& =R^{n t}[(\vec{u}+\vec{x} \times \vec{\Omega}) \cdot \vec{\nabla}(\vec{u}+\vec{x} \times \vec{\Omega})] \\
& =R u t[\{(u+\vec{x} \times \vec{\Omega}) \cdot \vec{\nabla}\} \vec{u}+\{(\vec{u}+\vec{x} \times \vec{\Omega}) \cdot \vec{\nabla}\}(\vec{x} \times \vec{\Omega})] \\
& =n^{n t}[\{(\vec{u}+\vec{x} \times \vec{\Omega}) \cdot \vec{\nabla}\} \vec{u}+\{(\vec{u}+\vec{x} \times \Omega) \times \vec{v}\}] \\
& \begin{array}{l}
\text { follous vsing identity } \\
(\vec{a}-\vec{v})(x \times \bar{a})=(\vec{a} \times \Omega)
\end{array} \\
& =R^{\Omega t}[\vec{u} \cdot \vec{\nabla} \vec{u}+(\vec{x} \times \vec{\Omega}) \cdot \vec{\nabla} u+\vec{u} \times \vec{\Omega}+(\vec{x} \times \vec{\Omega}) \times \vec{\Omega}]
\end{aligned}
$$

[.in General: $\hat{F}(\hat{a}, t)=R^{\Omega t} G^{\vec{\Omega} \times \vec{x}} \vec{F}(\vec{a}, t)=R^{\Omega t}\left[\left(\sigma^{n} \vec{a} \vec{a}, t\right)\right]$

- Apply to time derivative'.

$$
\begin{equation*}
\frac{\partial \hat{a}}{\partial t}(\hat{x}, t)=\lim _{\Delta t \rightarrow 0} \frac{\hat{a}(\hat{x}, t+\Delta t)-\hat{a}(\vec{x}, t)}{\Delta t} \tag{3b.}
\end{equation*}
$$

from eqn (3)

$$
\begin{align*}
& \hat{a}(\hat{x}, t+\Delta t)=R^{\Omega(t+\Delta t)} G^{\vec{\Omega} x \vec{x}_{t+\Delta t}} \vec{a}\left(\vec{x}_{t+\Delta t}, t+\Delta t\right) \\
& \hat{a}(\hat{x}, t)=R^{\Omega t} G^{\vec{\Omega} x \vec{x}} \vec{a}(\vec{x}, t) \tag{5}
\end{align*}
$$

use $\vec{X}_{t+\Delta t}=\vec{X}_{t}+\Delta t \vec{\Omega} \times \vec{x}$ in (4) expand to firstorder in Δt :

$$
\begin{align*}
& \Delta t G^{\vec{n} \times \vec{x}_{t}} \partial_{t} \vec{a}\left(\vec{x}_{t}\right) \tag{5a}
\end{align*}
$$

also: from la \& 2 we see also that for $\Delta t \rightarrow 0 \quad R^{\Omega \Delta t} \vec{a}=\vec{a}+\Delta t(\vec{a} \times \vec{\Omega})$
or $\lim _{\Delta t \rightarrow 0} \frac{R^{\Omega \Delta t} \vec{a}-\vec{a}}{\Delta t}=(\vec{a} \times \vec{\Omega})$
or $\lim _{\Delta t \rightarrow 0} \frac{R^{n \Delta t} G^{\vec{\Omega} \times \vec{x}} \vec{a}-G^{\vec{\Omega} \times \vec{x}} \vec{a}}{\Delta t}=G^{\vec{\pi} \times \vec{x}} \vec{a} \times \vec{\Omega}$

Lets combine $4,54,7$ into 36 sysumatially:
d

$$
\begin{align*}
& \Rightarrow \frac{\partial \hat{a}}{\partial t}(\hat{x}, t)=\lim _{\Delta t \rightarrow 0} \frac{\hat{a}(\hat{x}, t+\Delta t)-\hat{a}(\vec{x}, t)}{\Delta t} \quad(3 a \operatorname{again}) \\
& \lim _{\Delta t \rightarrow 0}\left[R^{\Omega(t+\Delta t)}\left[1+\Delta t(\vec{a} x \vec{x}) \cdot \vec{\nabla}+\Delta t \frac{\partial}{\partial t}\right] G^{\vec{\Omega} \times x,} \hat{a}(\vec{x}, t)\right. \tag{8}\\
& \\
& =R^{\Omega t} G^{(\Omega x \vec{x})_{t}} \vec{a}(\vec{a}(\vec{x}, t)] / \Delta t
\end{align*}
$$

Now sse $R^{\Omega(t+\Delta x)}=R^{\Omega t} R^{\Delta \Omega t}$ for small angle $\Omega \Delta t$: rotations [check using

$$
\left.\begin{array}{l}
\underbrace{\left(\begin{array}{cc}
\cos \Omega t & \sin \Omega t \\
-\cos \Omega t
\end{array}\right)}_{R \Omega t} \underbrace{\left(\begin{array}{cc}
1 & \Delta t \Omega \\
-\Delta \pi \Omega & 1
\end{array}\right.}_{R^{\Delta t \Omega}})
\end{array}=\left(\begin{array}{ll}
\cos \Omega(t+\Delta t) & \sin \Omega(t+\Delta t) \\
-\sin \Omega(t+\Delta t) & \cos \Omega(t+1) t
\end{array}\right)\right]
$$

Combine with (7), so that $(8)=7$

$$
\frac{\partial \hat{a}(\vec{x}, t)}{\partial t}=R^{\mu t}\left[\left(\vec{\Omega} x \vec{x} \cdot \vec{\nabla}+\frac{\partial}{\partial t}-\vec{\imath} \times\right] G^{(\vec{\Omega} \times \vec{x})} \cdot \vec{a}\right.
$$

combined after using (7).
Now apply to $\frac{\partial \hat{u}\left(\vec{x}_{,}\right)}{\partial t}$:

$$
\begin{aligned}
& \frac{\partial \hat{n}}{\partial t}(\hat{x}, t)=R^{\Omega t}\left[\frac{7}{\partial t}+(\Omega \times \vec{x}) \cdot \vec{\nabla}-\vec{\Omega} \times\right] G^{(\vec{\Omega} \times \vec{x})} \vec{u}(\vec{x}, t) \\
& \text { use } G \vec{\Omega} \times \vec{x} \vec{u}(\vec{x}, t)=\vec{u}(\vec{x}, t)+\vec{x} \times \vec{\Omega} \\
& =7 \\
& \frac{\partial \hat{u}}{\partial t}(\hat{x}, t)=R^{\Omega t}\left[\partial_{t}+(\Omega x \vec{x}) \cdot \vec{\nabla}-\vec{\Omega} x\right](\vec{u}+\vec{x} \times \vec{\Omega}) \\
& =R^{\Omega t}\left[\partial_{t}+\left(\Omega x_{x}\right) \cdot \vec{\nabla}-\vec{\Omega} x\right] \vec{u} \\
& +R^{\Omega t}\left[\partial_{t}^{\prime}+\left(\Omega x_{x} \hat{x}\right) \cdot \vec{\nabla}-\vec{\Omega} x\right](x \times \vec{\Omega}) \\
& \text { since } x_{2}(\vec{x} \times r)=0 \quad \sim \quad \sin \varphi(\vec{q} \cdot \vec{\nabla})(\vec{x} \times \vec{\Omega})=(\vec{q} \times \vec{r}) \\
& =R^{\Omega t}\left[\partial_{t}+(\Omega \vec{x}) \cdot \vec{\nabla}-\vec{\Omega} x\right] \vec{u} \\
& \text { (8) for any } \vec{q}
\end{aligned}
$$

Combining (8) a $(3 a)=7$
use (8) use 3 a

$$
\begin{align*}
\frac{\partial \hat{u}}{\partial t}+\hat{u} \cdot \nabla \hat{u}= & R^{n t}\left[\partial_{t}^{a}+(\Omega \cdot \vec{x}) \cdot \vec{\nabla}-\vec{\Omega} \times\right] \vec{u} \\
& +R^{n t}\{((\vec{u}+\vec{x} \times \vec{u}) \cdot \vec{\nabla}\} \vec{u}+\{(\vec{u}+\vec{x} \times \Omega) \times \vec{\Omega}\}] \\
= & R^{\Omega t}\left[\partial_{t}^{a} \vec{u}+\vec{u} \cdot \nabla \vec{u}+2 \vec{u} \times \vec{\Omega}+(\vec{x} \times \vec{\Omega}) \times \vec{\Omega}\right] \tag{8a}
\end{align*}
$$

for the last two terms:

$$
\begin{align*}
& R^{\Omega t}[2 \vec{u} \times \vec{\Omega}+(\vec{x} \times \vec{\Omega}) \times \vec{\Omega}] \\
& =\left[2 R^{\mu t} \vec{u} \times \Omega+\left(R^{\Omega t} \vec{x} \times \vec{\Omega}\right) \times \vec{\Omega}\right] \\
& =\left[2\left(\hat{u}-R^{r t} \vec{x}\right) \times \vec{\Omega}+\left(R^{\Omega t} \vec{x} \times \vec{\Omega}\right) \times \vec{\Omega}\right] \\
& =\left[2 \hat{u} \times \vec{\Omega}-2 R^{\Omega t} \vec{x} \times \vec{\Omega}+\left(R_{=\vec{x}}^{\left(R^{r t}\right.} \vec{x} \times \vec{\Omega}\right) \times \vec{\Omega}\right] \\
& =[2 \hat{u} \times \vec{\Omega}-(\hat{x} \times \vec{\Omega}) \times \vec{\Omega}] \quad \text { (q) } \tag{9}
\end{align*}
$$

Combine (sa) \& $(9.) \Rightarrow$

$$
\begin{equation*}
\frac{\partial \hat{u}}{\partial t}+\hat{u} \cdot \nabla \hat{u}=R^{\Omega t}\left[\partial_{t} \tilde{u}+\vec{u} \cdot \nabla \vec{u}\right]+\underbrace{2 \hat{u} \times \vec{\Omega}-(\hat{x} \times \vec{\Omega}) \times \vec{\Omega} .} \tag{10}
\end{equation*}
$$

these are coriolis \& cendritunel terms in final form
note

$$
\partial_{t} \vec{u}+\vec{u} \cdot \vec{\nabla}_{\vec{u}}=-\underbrace{\vec{\nabla}(\rho+\phi)+\nu \nabla^{2} \vec{u}}_{\vec{f}}
$$

is la b frame Navier stokes

- First note that $\hat{\nabla}=\Omega^{\Omega t} \vec{\nabla}^{\prime}$

$$
=R^{\Omega t} \stackrel{\rightharpoonup}{\nabla}
$$

and P, \varnothing scalars
are invariant so: $-\vec{\nabla}(P+\phi)=-\Omega^{n t} \vec{\nabla}(P+\phi)$

- For the viscous Herm:

$$
\begin{aligned}
\partial \hat{\nabla}^{2} \hat{u}=\nu \nabla^{\prime 2} \hat{u} & =\nu \nabla^{2} \hat{u} \\
& =\nu \nabla^{2} R^{\Omega t} \vec{u}^{\prime} \\
& =\nu \nabla^{2} R^{\Omega t} \vec{u}^{\prime} \\
& =\nu R^{\Omega t} \nabla^{2}(\vec{u}-\vec{\Omega} \times \vec{x})
\end{aligned}
$$

but in our cartesian coords,

$$
\begin{aligned}
& \nabla^{2}(\tilde{\Omega} \times \vec{x})=0 \\
\Rightarrow & \nu \hat{\nabla}^{2} \hat{u}=\nu R^{\Omega t} \nabla^{2} \vec{u}
\end{aligned}
$$

Combinig (12), (11), (10) the Navier - Stokes equ. in the rotativy frave is then:

$$
\frac{\partial \hat{u}}{\partial t}+\hat{u} \nabla \hat{u}=-\hat{\nabla}(p+\theta)+\nabla \hat{\nabla}^{2} \hat{u},+2 \hat{u} \times \vec{\Omega}-(\hat{x} \times \vec{\Omega}) \times \vec{\Omega}
$$

Note
For invariance of ∇^{2} note:

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{d x^{6}}{d x} \frac{\partial}{\partial x^{r}}+\frac{d y^{\prime}}{d x} \frac{\partial}{\partial y^{\prime}} \quad R= \\
& \frac{\partial}{\partial y}=\frac{d x^{\prime}}{d y} \frac{\partial}{\partial x^{r}}+\frac{d y^{\prime}}{d y} \frac{\partial}{\partial y^{\prime}},\left(\begin{array}{ccc}
\cos n t & \sin n t & 0 \\
-\sin n t & \cos n t & 0 \\
0 & 0 & i
\end{array}\right) \\
& \Rightarrow \quad \partial \quad \cos \Omega+\partial+\sin \Omega+\partial\binom{x^{\prime}}{y^{\prime}}=R\binom{x}{y} \\
& \frac{\partial}{\partial x}=\cos \Omega t \frac{\partial}{\partial x^{\prime}}+\sin \Omega t \frac{\partial}{\partial y} . \\
& \frac{\partial}{\partial y}=-\sin \Omega t \frac{\partial}{\partial x^{\prime}} \cdot t \cos \Omega t \frac{\partial}{\partial y^{\prime}} \\
& \Rightarrow \frac{\partial^{2}}{\partial x^{2}}=\left(\cos ^{2} \Omega t\right) \frac{\partial^{2}}{\partial x^{\prime 2}}+\sin ^{2} \Omega t \frac{\partial^{2}}{\partial y^{\prime 2}}+\partial \sin \Omega t \cos \Omega t \frac{\partial}{\partial x^{\prime}} \frac{\partial}{\partial y^{\prime}}, \\
& \frac{\partial^{2}}{\partial y^{2}}=\left(\sin ^{2} \Omega t\right) \frac{\partial^{2}}{\partial x^{\prime 2}}+\cos ^{2} \Omega t \frac{\partial^{2}}{\partial y^{\prime 2}}-2 \sin \Omega t \cos \Omega t \frac{\partial}{\partial x^{\prime}} \frac{\partial}{\partial y^{\prime}}, \\
& \Rightarrow \nabla^{2}=\partial_{x}^{2}+\partial_{y}^{2}=\partial_{x^{\prime}}^{2}+\partial_{y^{0}}^{2}
\end{aligned}
$$

Lagrangian approach

$$
\begin{aligned}
& \left.\frac{d \vec{x}}{d t}\right|_{\text {inertial }}=\left.\frac{d \vec{x}}{d t}\right|_{\pi t}+\vec{\Omega} \times \vec{x}\left(\left(\frac{d}{d t}+\vec{\Omega} x\right)\left(\frac{d}{d t}+\vec{\Omega} x\right)\right. \\
& \left.\frac{d^{2} \vec{x}}{d t^{2}}\right|_{\text {methane }}=\left.\frac{d^{2} \vec{x}}{d t^{2}}\right|_{n+t}+\vec{\Omega} \times\left.\frac{d \vec{x}}{d t}\right|_{n+t}+\vec{\Omega} \times\left.\frac{d \vec{x}}{d t}\right|_{n t}+\vec{\Omega} \times \vec{\Omega} \times \vec{x} \\
& \left.\frac{d \vec{v}}{d t}\right|_{\text {inctind }}=\left.\frac{d \vec{v}}{d t}\right|_{\text {rot }}+a \Omega \times \vec{v}+\vec{\Omega} \times \vec{\Omega} \times \vec{x} \\
& -\vec{\nabla} \varphi+\nu^{2} \vec{v}=\left.\partial_{t} \vec{r}\right|_{\text {mot }}+\vec{v} \nabla \vec{r}+2 \vec{\Omega} \times \vec{v}+\vec{\Omega} \times \vec{\Omega} \times \vec{x} \\
& -\frac{1}{2} \nabla(\vec{\Omega} x \vec{x})=-\frac{1}{2} \nabla\left(\Omega^{2} \vec{x}^{2}-(\vec{\Omega} \vec{x})(\vec{\Omega} \vec{x})\right) \\
& =\Omega^{2} \hat{x}^{2}-(\vec{\Omega} \cdot \vec{x}) \vec{\Omega} \\
& =-\vec{\Omega} \times(\vec{\Omega} \times \vec{x}) \\
& P \rightarrow P_{\text {eft }}=\left(P+\frac{1}{2}(\Omega \times \vec{x})^{2}\right)
\end{aligned}
$$

Hydrodynamics in Notating Frame
Naver-stokes equation in rotating frame

$$
\begin{equation*}
\frac{d \vec{u}}{d t} \rightarrow \frac{d \hat{u}}{d t}+2 \vec{\Omega} \times \hat{u}=\vec{\Omega} \times(\vec{\Omega} \times \vec{x}) \tag{198}
\end{equation*}
$$

(Here, assume that $\Omega=$ constant.) in cartesian cords lets use \vec{v} for \hat{u} :

$$
\vec{r}=(x, y, z)
$$

rovidis force

$$
\frac{\partial \vec{v}}{\partial t}+\vec{v} \cdot \nabla \vec{v}=-\frac{1}{\rho} \vec{\nabla} p+\vec{F}+\vec{\nu}^{2} \vec{v}-2 \vec{\Omega} \times \vec{v}-\overbrace{\pi} \times(\vec{\pi} \times \vec{v})
$$

note that $-\vec{\Omega} \times(\vec{\Omega} \times r)=-\frac{1}{2} \nabla(\vec{\Omega} \times \vec{r})^{2} \quad$ for $\Omega=$ ins $\ln \cdot \vec{n} 1$

$$
\begin{aligned}
-\vec{\Omega} \cdot \vec{r}) \vec{\Omega}+\Omega^{2} \vec{r} & =-\frac{1}{2}\left(\vec{\nabla}(\vec{\Omega} \cdot r)^{2}+\frac{1}{2} \vec{\nabla}\left(\Omega^{2} r^{2}\right)\right. \\
i f \frac{\partial \Omega}{r}: \theta & =-\vec{\Omega}(\vec{\Omega}-r)+\Omega^{2} r
\end{aligned}
$$

in r $n=$ constant
thus

$$
\frac{\partial \vec{v}}{\partial t}+(\vec{v}-\vec{\nabla}) \vec{v}=\frac{-\vec{\nabla} p}{\rho}-\vec{\nabla}(\underbrace{\Phi-\frac{1}{2}|\vec{\Omega} \times \vec{r}|^{2}}_{\underline{\Phi}_{e f f}})+V \nabla^{2} \vec{v}-2 \vec{\Omega} \times \vec{v}
$$

Since centrifugal force can be written as potential, is easier to a deal with than the coridis term- $-2 \Omega x \vec{r}$

For slowly rotating objet like Earth, rentritagal term is small. But lage sale flows, hurricanes and ocean currents are influenced by coriolis force. To assess when it's important, compare $\vec{V} \cdot \vec{\nabla} \dot{V}$ to $\vec{\Omega} \vec{V}$ for scale L $|\vec{V} \cdot \vec{\nabla} \vec{V}| \sim V^{2} / L=\Rightarrow \quad R_{0} \equiv \frac{V^{2}}{\Omega V L}=\frac{V}{\Omega L} \leq 1$
$\| \vec{\Omega} \times \vec{V} \Omega V$
e.9. Earth rotation
\Rightarrow coriolis force is important when the Nossby Number $R_{0}<1$, where V, L are typical velocity and length scales of the flow.
For fluid phenomena in the lab, $R_{0} \gg 1$, but in atmosphere and oceans $R_{0}<1$. Studying large scale atmospheric or ocean flows is Geophysical Fluid Dynamics. Usually one assumes thin spherical fluid swell with Small Rosily number.

Move detailed
calculation of nossby number
$R_{0}=$ ratio of inertial terms in Navier-stohes
Coriolis force

$$
=\frac{|\vec{v} \cdot \vec{\nabla} \vec{v}|}{|2 \vec{n} \times \vec{v}|}
$$

Consider Earth:
 \hat{u}. "up" normal to plane \hat{N} north \hat{e}. east
4- latitude

in coordinate system insphere

$$
\begin{aligned}
& (\hat{e}, \hat{N}, \hat{u}) \text { : } \\
& \vec{u}=(0,|\Omega| \cos \phi|I| \sin \theta), \quad \vec{V}=\left(V_{e} V_{N}, V_{u}\right) \\
& -2 \vec{n} \times \vec{v}=-2\left(V_{4}|\Omega| \cos \phi-|\Omega| V_{N} \sin \phi ;|\mu| V_{e} \sin \phi,-V_{e}|n| \cos \phi\right) \\
& \text { (usually small) for both } \\
& \Rightarrow \quad v_{u} r_{e}<a V_{N} \text { we get! } \\
& |\partial \vec{\Omega} \times \vec{v}|=|2| \Omega\left|V_{n} \sin \phi\right| \quad \Rightarrow \\
& R_{0}=\frac{|\vec{V} \cdot \vec{\nabla} \vec{V}|}{|2| \Omega|V \sin \phi|}=\frac{V^{x}}{2 L \forall \Omega \sin \phi}=\left|\frac{V}{\partial L \Omega \sin \phi}\right|
\end{aligned}
$$

Geostrophic approximation
In atmosplacic or ocean applications assume flows oil nearly "horizontal" (nonradial) in a thin layer (much thinner than Earth's radius).
For low cosby Number flows, left hand terms of (199) are sail compared to leading terms on right side, we can also neglect viscosity and centrifugal terms (slows rotation, nearly inviscid flow). Then $(199) \Rightarrow$

$$
-\frac{\nabla p}{f}-\vec{g} \hat{e}_{r}-2 \vec{\imath} \times \vec{v}=0 \quad(g=-\nabla \phi) \quad(200)
$$

Usually, coriolis force is small compared to gravity in vertical direction so the \hat{r} component becomes

$$
\begin{equation*}
-\frac{1}{\rho} \frac{\partial p}{\partial r}=g \tag{201}
\end{equation*}
$$

but horizontal direction:

$$
\nabla_{h p}=-2 \rho(\vec{\Omega} \times \vec{v})_{h}
$$

Horizontal pressure gradient balanced by coriolis force \rightarrow

Not the interesting fact that the velocity is 1 to the gradient in pressure if cross product wi Ω balances $\nabla_{h} p$. This means that if there is a low pressure region in the atmosphere, velocity does not flow into low pressure region, but flows around, it::

$$
\nabla \rho \alpha-\vec{\Omega} \times \vec{v}
$$

Ω is Earth rotation, v is foo velocity
vortex $\vec{\nabla} \times \vec{V}$ is $\|$ to underlying rotation $\vec{\Omega}$
\Rightarrow Cyclonic Circulation around low pressure region in a vortex tube

Vorticity in Notating Frame
USing vector identity for $-v . \nabla V$ we can write (199)

$$
\begin{equation*}
\frac{\partial \vec{v}}{\partial r}=\vec{v} \dot{x} \vec{\omega}-\nabla\left(\frac{p}{\rho}+\frac{1}{2} v^{2}+\phi-\frac{1}{2}(\hat{\jmath} \times \vec{r})^{2}\right)-2 \vec{\jmath} \times \vec{v} \tag{202}
\end{equation*}
$$

taking cur $\Rightarrow \frac{\partial w}{\partial t}=\nabla \times(\vec{v} \times \vec{w})+\nabla \times(\vec{v} \times 2 \vec{n})$
assuming $\Omega=$ constant we can write (203)

$$
\frac{\partial}{\partial t}(w+\partial \Omega)=\nabla \times[v \times(w+2 \Omega)]
$$

this is of the form $\frac{\partial \vec{Q}}{\partial t}=\nabla \times \vec{V} \times \vec{Q}$ with
$Q=(\vec{\omega}+\partial \vec{N})$ Pros we know from derivation of hern circulation theorem phat

$$
\frac{d}{d L} \int(w+2 \Omega) \cdot d S=0 \quad \text { (Bjerknes Theorem) }(205)
$$

this genendiration implies hat if Ω is increased, local vorlicis must increase oppositely to underlying rotation to satiety the
trill.
Self-gravitating masses - Maclawia + Jacobi elvisurs:
Consider an initially spherically symmekn, gravitating fluid of uniterm density and start it rotating: Flattening rear the poles is expected Assume a is constant, then more to frame in which $V=O$ (rotating frame) and consider the equltibrisn configurations. Madawin $=$ biaxial, $\frac{\text { Tawbipsid }}{\text { allpsid }}$ triaxial

Acreretion withe Angular momentum:
(a context for mean field fluid dynamics and turbulent transport)

- Bandies, (onpluex Xraybindra)
are where wave caper a lot about accretion: any binaries?
- orbiting system, tidal forces

$$
\Rightarrow
$$

$$
\text { disk; to accel, } 4 \text { momentum }
$$

must be sheree (or equivalently, transported outioure) two reasons for branny, mass trassavia
(1) one ot the stars may increase in see during crointran: companion can rip of mater lay:
(1) ejection of mass by stellar ward and accretion onto the companion
Important concert is Ruche lobe Overflow

- 19th century Edovard Roche studied destruction of planetary satellites (moons, etc.)
- Basie idea vas to consider orbit of test particle in gran potential if two orbiting, massive dotes
\therefore carnally condensed "
- Assure two n stars orbit each other in Kepterian, circular orbits, and consider, test particle gas motion in the potential (also called "restrike probes. problem", beaus
 gas is assumed not to influence the binary orbit)
- Las flow between stars governed by Euler equation. In rotating frame:

$$
\begin{aligned}
& \frac{\partial \vec{v}}{\partial t}+\vec{V} \cdot \vec{\nabla} \vec{v}=\underbrace{-\vec{\nabla} \phi_{R}}_{\text {Grav}+ \text { Cent. force }}-\underbrace{}_{\text {mass }}-2 \vec{w} \times \vec{v} \\
& \text { coriolis force/mass }
\end{aligned}
$$

$\vec{\omega}$ fra revert lav $\vec{\omega}=\omega_{z} \hat{z}$:

$$
\begin{aligned}
& \vec{\omega}=\left[\frac{G\left(M_{1}+M_{0}\right)}{a^{3}}\right]^{1 / 2} \hat{z} \\
& \bar{w}=\frac{G M}{\mid \vec{r}}-\frac{M_{1}}{\left|\vec{r}-\vec{r}_{2}\right|}-\frac{1}{2}(\vec{\omega} \times \vec{r})^{2}
\end{aligned}
$$

Roche potential.
Set $Q_{R}=\operatorname{cosetant}$ and plot:

Engine evolution:
assume both stars are smaller then Roche lobe and are in circular orbit, and tidally locked \Rightarrow surface of each star corresponds to circular equipotential surface. (follows from momention equation with $\vec{V}=0$ and $\nabla P=0$ on surface of star)
\because Binary is fully detailed
(2) If one star then swells \& fills roche lobe (usually called secondary star) then primary can accrete this is a semi-detached binary
(3) can you guess what a contact binary is?
(both stars fill Roche lobes)

Formation of Disk in Binary
Note that material is pushed though of orbit, $V_{11} \ll V_{1}$ for tonal ayenem
$M_{d}-v_{1} V_{1}$ in are in remember, previous equations edges over L! HI

$$
V_{11} \simeq C_{s} ; V_{d} v V_{k}
$$

typically $V_{11} \ll V_{\perp}$, $[$

$$
V_{\pi}=10^{2} M_{1}^{1 / 3}\left(1+\frac{M_{1}}{M_{1}}\right)^{1 / 3} P_{d a y}^{-1 / 3}
$$

\Rightarrow gas has

* momentum which it Needs to shed to accrete

Gas will first orbit in circle at

$$
\text { at } V_{\phi}\left(R_{\text {en }}\right)=\left(\frac{\left(M_{1}\right.}{R_{c}}\right)^{1 / 2}
$$

wt $\left.V_{p}\left(R_{\text {rice }}\right) R_{0}=\left(d_{1+n}^{2},\right)^{2}\right)$ orbit velate
\& momenta conservation

$$
\begin{aligned}
& \text { Using hepte: }\left(\begin{array}{l}
4 \pi^{2} a^{3}=G\left(\mu_{1}+M_{2}\right) p^{2} \\
\text { and } p=z=\frac{I}{\omega}
\end{array} \text { and } V_{\phi}\left(R_{\text {cir }}\right)=\left(\frac{\left(-\mu_{1}\right.}{R_{c}, n}\right)^{1 / 2}\right) \\
& \text { Ah formula for hems on page } 134 \Rightarrow
\end{aligned}
$$

$\Rightarrow R_{\text {cir } / a}=\left(\frac{m^{2}}{a}, M_{1} P^{2}\right) a^{3}(\text { dur me } / a)^{4}=$

Reich $<R_{H, 1}$ <ra tom M_{1}
never ar $\mathrm{N}^{\prime}, B H$, or WD systems
So we ae gas orbing de

$$
R=R
$$

Internal dissipation uill
lead to madation \rightarrow less.t
Adratore 1 ore of kintic
thergy \Rightarrow material sincs deeper into grave petentiat a, arelom \Rightarrow loss of \Varangle mowentum.
HNow $t_{\text {wol }}$ (codytioe) is andy $-<t_{\text {a }}$ ad tdyn \ll tace os that material semde ia stown
\rightarrow but if material loses x mamenam what carries it?: some wateriat actually goes ontward, "inital rigy" torns into dok.
\rightarrow usually for canpad objects disk not self graviday $\left(\rho \ll M / R^{3}\right)$ $\Rightarrow \Omega=\Omega_{k}=\left(\frac{G M_{1}}{R^{3}}\right)^{1 / 2}$ Replerian able $->$
\rightarrow Kinetic energy of gus ament Dm in hepterian orbit is

$$
\begin{align*}
& \frac{L-M \Delta m}{R_{*}} \Rightarrow \text { dummosity lost } \tag{199}
\end{align*}
$$

$\frac{b M \Delta m}{R_{*}}$, so $1 / 2$ is radiant ar do in disk, other $1 / 2$ released of star
\rightarrow Compare faction to x momentum: $R^{2} \Omega(R) \propto R^{1 / 2}$ now since Reich R_{*} in general nearly $108 t . \rightarrow$ dissiputan porous

Vivas evolution equations for Accretion Dish (139r)
Rather then try to "construct" visous transport from first principles ás attempted (and done very incorrectly in some textbooks) lets assume that turbulence acts as a viscosity to then derive the accretion disk transport equations. Note that this "assumption" is tally equivalent to what is currently used in disk modeling for direct comparisons with observations but not a fundamentally consistent or complete approach. It is a theoretical frontier to improve the theory.

So for the present we will explicitly assume a closure" for which the Reynolds ster tums associated with turbulent fluctuations Wavier stokes equate take the form:

$$
\begin{equation*}
\overline{\vec{u}} \cdot \nabla \overrightarrow{u^{\prime \prime}}=-\nabla \times\left(v_{T} \nabla \times \bar{u}\right) \tag{lr}
\end{equation*}
$$

where $\vec{u}^{\prime}=\vec{u}^{\prime}+\vec{u}$

$$
V_{T}=\frac{\sum_{2}}{2 H} \eta_{=\text {Actuation }^{\text {mean }}}=V_{T} l_{T}=\text { tun }
$$

Slender ale. distr theory as

$$
\begin{aligned}
& \text { as foll } \\
& \text { wean) }
\end{aligned}
$$

netpage for $\bar{\Sigma}$ and H :
the continuity equation is green by

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \vec{u})=0 \quad \text { for } \rho=\rho(\sigma, \nu, z), u=u(v, y, z)
$$

$\Rightarrow \bar{\Sigma}=\bar{\Sigma}(r), \bar{u}=\bar{u}(r) \quad\left(z, d\right.$ are are robed $\left.\begin{array}{c}\text { out }\end{array}\right)$
then - after integrating over, $d \phi d z,(1 q) \Rightarrow$

$$
\frac{\partial \Sigma}{\partial t}+\frac{1}{R} \frac{\partial}{\partial R}\left(R \Sigma U_{R}\right)=0 \quad(\text { (blind. cords) } \quad(3 r)
$$

Similarly, from the ϕ component ob Nav. Stoles:

$$
\begin{aligned}
& \sum^{\prime}\left(\frac{\partial \bar{u}_{\phi}}{\partial t}+\bar{u}_{R} \frac{\partial \bar{u}_{\theta}}{\partial R}+\frac{\bar{u}_{R} \bar{u}_{\phi}}{R}\right)=\frac{\partial}{\partial R}\left(\frac{v_{1} \sum}{\left.\Sigma \frac{\partial \bar{\partial}_{q}}{\partial R}\right)+\frac{1}{R} \frac{\partial}{\partial R}\left(V_{T} \bar{\Sigma} \bar{u}_{\psi}\right)}\right. \\
& -\frac{V_{r} \overline{\varepsilon_{Q}} \bar{U}_{R}^{2}}{}-\frac{\partial U_{0}}{R} \frac{\partial \eta}{\partial R} \text { (ur) }
\end{aligned}
$$

Hereafter for notational simplicity
I drop the overbars on $\bar{u}, \bar{\varepsilon}$ and write $V_{T}=V$. That is $\bar{u} \rightarrow U$ and $\bar{\Sigma} \rightarrow \Sigma$.
then multiply eqn 3 ri by $R u_{\phi}$:

$$
\Rightarrow R U_{\phi} \frac{\partial \varepsilon}{\partial t}+u_{\phi} \frac{\partial}{\partial R}\left(R \Sigma U_{R}\right)=0 \quad\left(S_{r}\right)
$$

and multivin eq (Jr) by R :.

$$
\begin{align*}
& \Rightarrow R \sum \frac{\partial u_{\phi}}{\partial t}+R \sum u_{R} \frac{\partial u_{\phi}}{\partial R}+\sum u_{R} u_{\psi} \\
& =R \frac{\partial}{\partial R}\left(\nu \sum \frac{\partial u_{\psi}}{\partial R}\right)+\frac{\partial\left(\nu \sum u_{\phi}\right)}{\partial R}-\frac{\partial \sum u_{\psi}}{R}-2 u_{\psi} \frac{\eta \eta}{\partial R} \\
& \underset{\text { next page }}{ }
\end{align*}
$$

\int Footnak:: The ϕ component te the axisymmetic Wavier sta hes equation equation that arises it one assmeses $\frac{3}{240}=0$ of all quantity and assumes $u=\bar{u}$ and $\rho=\bar{j}$ and simply relays $\ddagger \eta$ with $\bar{j} \eta$ is

Gr can be devise by by integration this over 7 often

$$
\begin{align*}
& \text { Add }(5 r)+(6 r) \text { using } \Omega=\frac{U_{0}}{R} \\
& \Rightarrow \quad \frac{1}{R} \frac{\partial}{\partial R}\left(R^{2} \varepsilon u_{n} u_{\phi}\right) \text { 日 } H_{\eta} \\
& R \frac{\partial\left(\Sigma U_{p_{1}}\right)}{\partial t}+\frac{\partial}{\partial R}\left(R \sum U_{R} \widetilde{U}_{k}\right)+\sum U_{R} U_{\psi^{\prime}} . \\
& =R \frac{\partial}{\partial R}\left(V \varepsilon \frac{\partial}{\partial R}(\Omega R)\right) \\
& +\frac{\partial}{\partial R}(\nu \varepsilon \Omega R)-v \Sigma \Omega \\
& -\frac{2 \mu R}{R} \frac{\partial \sum_{2}}{R} \\
& \therefore \frac{\partial^{\prime}\left(\sum u_{\phi} R\right)}{\partial t}+\frac{1}{R} \frac{\partial}{\partial R}\left(R^{2}\left\{u_{n} u_{q}\right)=\frac{1}{R} \frac{\partial\left(\nu \sin R^{3} \frac{\partial \Omega}{\partial R}+\Omega R^{2}\right)}{\partial R(B)(7 r)}\right. \\
& \text { (B) (C) + (D) +(E) } \cdots-2 v \varepsilon \frac{\partial}{\partial R}(\Omega R) \tag{0}\\
& =0 \\
& +R \frac{\partial}{\partial R}(u \varepsilon \Omega) \tag{D}\\
& -2 \Omega R \frac{\partial(\Sigma \nu)}{\partial R} \tag{E.}\\
& =\frac{1}{n} \frac{\partial\left(v \sum n^{3} \frac{\partial \Omega}{\partial R}\right)}{\partial R}+0
\end{align*}
$$

$$
\frac{\partial}{\partial t}\left(R \sum U_{\phi}\right)+\frac{1}{R} \frac{\partial}{\partial R}\left(\sum R^{2} U_{Q} U_{R}\right)=\frac{1}{R} \frac{\partial}{\partial R}\left(\partial \sum R^{3} \frac{d \Omega}{\partial R}\right) \text { (gr) }
$$

Eulerim Cage
of noventim
per area
\uparrow
 per area
multiply both sides by $2 \pi R d R$ so that $-\frac{3}{2} \lim \pi^{3}$ equation represents angular momentum evolution ${ }^{3}{ }^{3} \mathrm{H}^{R^{3}}{ }^{2}$ of an annulus.

$$
\begin{equation*}
d R \frac{\partial}{\partial t}\left(2 \pi R^{2} \Sigma u_{R}\right)+\frac{d R}{R^{2}} \frac{\partial}{\partial R}\left(2 \pi R^{2} \Sigma u_{q} u_{k}\right)=\frac{d R \partial}{\partial R}\left(2 \pi R n^{3} \frac{\partial \Omega}{\partial R}\right) \tag{9r}
\end{equation*}
$$

net viscous torque en annulus.
torque at radius R :

$$
\Rightarrow G(R)=2 \pi V<R^{3} \frac{\partial \Omega}{\partial R} \leftarrow\left(E_{q n} \cdot 10 r\right)
$$

$$
d R \frac{\partial G}{\partial R}=d G
$$

$=R^{\prime} \times$ (viscous force)

$$
\begin{aligned}
& =R\left(2 \pi \nu \sum R^{2} \frac{\partial \Omega}{\partial R}\right) \\
& =R(2 \pi \nu 2 \rho) \quad \text { (note: dish thichress) } \\
& =R(4 \pi R H \underbrace{\left.\rho \nu R \frac{\partial \Omega}{\partial R}\right)}=R(2 \times \text { Aras of annulus })\left(\sigma_{r_{\phi}}\right)=\text { torque } \\
& \sigma_{c p}=\text { force per unit area in tangential direction } \\
& \text { Force per on surtale with radial normal }
\end{aligned}
$$

Check physical consistency:

$$
G=0 \quad \text { for } \frac{d \Omega}{d R}=0
$$

$$
G<0 \text { for } \frac{d \Omega}{d R}<0
$$

total torque on ring of gas between $R, R+d R$:

$$
G(R+d R)-G(R)=\frac{\partial G}{\partial R} d R=d G \text {. Now }
$$

ate of work $=d \vec{F} \cdot \vec{v} \cong d \vec{F} \cdot(\vec{\Omega} \times \vec{R})$

$$
\begin{aligned}
& =\vec{\Omega} \cdot(\vec{R} \times d \vec{F}) \\
& =\vec{\Omega} \cdot d \vec{G}= \pm \Omega d G
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \text { rate of work } \quad \text { (because } d \vec{G} \| \pm \vec{\Omega}) \\
& =\Omega \frac{\partial G}{\partial R} d R=\frac{\partial(\Omega f)}{\partial R} d R-G \frac{\partial \Omega}{\partial R} d R
\end{aligned}
$$

integrate: \Rightarrow total work rate

$$
=\underbrace{\int_{\text {Rout }}^{\text {Rout }} \frac{\partial(\Omega G)}{\partial R}}_{\begin{array}{c}
\text { hin orndarly } \\
\text { term }
\end{array}} d R-\underbrace{\int_{R i n} G \frac{\partial \Omega}{\partial R} d R}_{\begin{array}{c}
\text { internal dissipation } \\
\text { term }
\end{array} \rightarrow}
$$

dissipation term converts mechanical energy into particle energy \rightarrow heat \rightarrow radiation
per $\operatorname{arca}(2$ faces of ring $)=>$

$$
\begin{aligned}
& \text { 2fuc) } \frac{G \frac{\partial \Omega}{\partial R} d K}{4 \pi R d R}=\frac{G(R)}{4 \pi R} \frac{d \Omega}{d R} \\
& \begin{aligned}
= & +\frac{1}{2} \nu \sum R^{2}\left(\frac{d \Omega}{d R}\right)^{2}(\underset{(\text { (arg) } 148)}{\text { from }})
\end{aligned} \\
& \text { rate per unit area } \\
& \text { from dissipation }
\end{aligned}
$$

note we need to have $\frac{d \Omega}{d R} \neq 0$
need to know ν, \sum to
compare to observations.

$$
\Rightarrow
$$

Viscosity can be estimated by characteristic velocity and length scale associated with particle molas a deflections.
The force density associated with the viscosity of the previous section comes from the $\rho \nabla \nabla^{2} V$ term in navies stones equation. Recall that $V=V_{T}+V_{\text {micicplens }}$
 to recall its importance
compute the Reynolds number: ratio of $V-\nabla V$ term to $\nu \nabla^{2} v$ term for $V=V_{\phi}, \nabla \sim \frac{1}{R}, V=l_{T} V_{T}+\operatorname{limpiph}_{s} C_{s}$

$$
\Rightarrow \frac{|V \cdot \nabla V|}{\left|\nabla \nabla^{2} V\right|}=\frac{R V_{\phi}}{l_{+} V_{T}}=R_{e, \text { eff }}=1
$$

Not: If turbulence mixer absent, really that gale four coviomb collisions or pates

Thus V_{T} is associated with Macroscopic, instead of microscopic values.

Shahura \& Sungaer (1973)
parameterized $U_{T}=\ell V_{T}=\alpha_{S S} C_{S} H$
where H is dish height, c_{s} is sound speed and ass is 2 parameter. $\alpha_{s s}<1$ under assumption that,
for disk which is vertically pressure upported, maximum random velocity is c_{s}, (more on that later). Also, any structure must be < disk height H. Thus $\alpha_{s s} \leq 1$, determining its exact value is an ongoing struggle
leading model is turbulence generated by magneto-rotational instability
(egg. Ballbus \& Howler, Red Nod thy 1948)
(Note also Blackman et al. 2006
for relation belucen α and $\beta=\frac{P+2}{B^{2} / 8 \pi}$:
is robust and for many simulations α / β

Racial vebuity as diffusion velar
thin disks

$$
\begin{aligned}
& \text { thin disks } \\
& \Omega=\Omega_{n}(R)=\left(\frac{G M}{R^{3}}\right)^{i_{s}} \Rightarrow H_{4}=R \Omega_{n} \\
& \text { do ave } V_{0} \text { radial ant velarity }
\end{aligned}
$$

Us have V_{R}, radial art t velocity, most be second order quantity. $\frac{2}{2}$, we this more explicitly.

Write conservation elutions:
annuls of disk lying between R has mass $2 \pi R \Delta R \Sigma$, and $千$ momentum $2 \pi R \Delta R E R^{2} \Omega$.
Rate of, charge of mas' is (for small charges)

$$
\begin{aligned}
& \text { Rate of, charge of mass is } \\
& \begin{aligned}
\frac{\partial}{\partial t}(2 \pi R \Delta R S) & =V_{R}(R, t) 2 \pi R 乏(R, t)-V_{R}(R+\Delta R, t) 2 \pi(R+\Delta, t) \sum(R+\Delta R, t) \\
& \approx-2 \pi D R \frac{\partial}{\partial R}\left(R \sum K_{R}\right)
\end{aligned} \\
& \text { or }
\end{aligned}
$$

$$
\begin{aligned}
& \text { or } \\
& R \frac{\partial \Sigma}{\partial t}+\frac{\partial\left(R \Sigma V_{R}\right)}{\partial R}=0 \quad \text { (mass continuity) (1420) }
\end{aligned}
$$

for X momentum same idea:

$$
\begin{aligned}
& \frac{\partial}{\partial t}\left(2 \pi R \Delta R \varepsilon R^{2} \Omega\right)=W_{R}(R, t) 2 \pi R \sum(R, t) R^{2} \Omega(R, t) \\
& -U_{R}(R+\Delta R, t) 2 \pi R \varepsilon(R+\Delta R, t)(R+\Delta R)^{2} \Omega(R+\Delta R, t) \\
& \\
& +\frac{\partial G}{\partial R} \Delta R
\end{aligned}
$$

I from before the torque

$$
\simeq-2 \pi \Delta R \frac{\partial}{\partial R}\left(\Sigma V_{R} R^{3} \Omega\right)+\frac{\partial G}{\partial R} \Delta R
$$ or

$$
\begin{array}{r}
\therefore \partial_{t}\left(\sum R^{3} \Omega\right)+\frac{\partial}{\partial R}\left(\sum V_{R} R^{3} \Omega\right)=\frac{1}{\partial \pi} \frac{\partial G^{2}(W)}{\partial R}\left(\begin{array}{ll}
\text { or } 3)
\end{array}\right. \\
\quad 女 \text { cons: }
\end{array}
$$

4 mom cons:

$$
\begin{equation*}
G(R, t)=2 \pi) \sum R^{3} \frac{\partial \Omega}{\partial R} \text { from }(1 Q r) \tag{143n}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \sum R V_{R} \frac{\partial\left(R^{2} \Omega\right)}{\partial R}=\frac{1}{2 \pi} \frac{\partial G}{\partial R} \tag{1+4}
\end{equation*}
$$

use $\left\{\begin{array}{c}\text { ag }\end{array}\right.$ \& (ait) to get Mr:

$$
\begin{aligned}
R \frac{\partial \Sigma}{\partial t} & =-\frac{\partial}{\partial R}\left(R \Sigma V_{R}\right) \\
& =-\frac{\partial}{\partial R}\left[\frac{1}{2 \pi \frac{\partial}{\partial R}\left(\Omega R^{2}\right)} \frac{\partial G}{\partial R}\right]
\end{aligned}
$$

from 143a
Now since $\Omega \propto R^{-3 / 2}$ hepterian of $2 \pi R E R^{3} d R$

$$
\begin{equation*}
\frac{\partial \Sigma}{\partial t}=\frac{1}{R} \frac{\partial}{\partial R}\left[R^{1 /} \frac{\partial}{\partial R}\left(\nu_{T} \Sigma R^{1 / 2}\right)\right] \tag{1+8}
\end{equation*}
$$

surface density
Given soln of (Hs)
V_{R} follows from '/id)

$$
\begin{aligned}
& R \text { follows from }(1 / 2) \\
& U_{R}=-\frac{1}{\sum R^{1 / 2}} \frac{\partial}{\partial R}\left[\nu_{T} \Sigma R^{1 / 2}\right]
\end{aligned} \quad(-16)
$$

Fornconstant ν_{T} : (iv) implies

$$
\begin{aligned}
& \Rightarrow \frac{\partial}{\partial t}\left(R^{1 / \delta}\right)=\frac{\partial_{T}}{R}\left(R^{1 / 2} \frac{\partial}{\partial R}\right)^{2}\left(R^{1 / \alpha} \varepsilon\right) \\
& \text { let } s=2 R^{1 / 2} \Rightarrow \frac{\partial}{\partial R^{2}} \cdot \partial R^{3} 5=R^{-1 / 27} \partial \\
& \Rightarrow \quad \frac{\partial}{\partial t}\left(R^{1 / 2} \Sigma\right)=\frac{4 \lambda T}{s^{2}} \frac{\partial^{2}}{\partial s^{2}}\left(\Sigma R^{1 / 2}\right) \\
& \frac{\partial}{\partial t}(5 s)=\frac{4 v_{T}}{s^{2}} \frac{\partial^{2}}{\partial s^{2}}(\Sigma s) \quad \rightarrow
\end{aligned}
$$

as $a=R^{1 / 2} \varepsilon=C(t) e^{i k^{1 / 2} s}$ just as an example

$$
\frac{\partial}{\partial t}\left(R^{\prime \prime 2} \varepsilon_{\varepsilon}\right)=-\frac{4 v_{x} K}{s^{2}}\left(R^{1 / 2} \Sigma\right)
$$

$$
Q_{2} \sum_{2}=Q=Q_{0} e^{-4 \frac{V_{c}}{S^{2}} K t}, Q_{0}=R^{12 \xi(0)}
$$

\Rightarrow diffusion ; effect
of constant viscosity is to diffuse mass density. (true for any separable $R^{\prime \prime \prime}+=f(t) g(s)$

$$
\begin{aligned}
t_{\text {vise }} & \approx \frac{s^{2}}{4 v_{T} k}=\frac{R}{v_{T} k} \\
& \approx \frac{R^{2}}{V_{T}} \text { for } k=\frac{1}{R}
\end{aligned}
$$

effect of viscosity is to spread structure of of radius R on time scale $t_{\text {vise. }}$

From $(+46)$

$$
V_{R}=-\frac{1}{\sum R^{1 / 2}} \frac{\partial}{\partial R}\left(V_{T} \sum R^{1 / 2}\right)
$$

$$
\sim+\frac{V_{c}}{R} \text { when } q<-1 / 2
$$

W_{R} is in general a diffusion
velocity
Shathen -surged (197d) approximation

$$
\frac{V_{R}}{R}=\alpha_{s s} c_{s} \frac{H}{R} \quad \text { for } \quad V_{T}=\alpha_{s s} t_{s} H^{\prime}
$$

Note also that $C_{S} \ll V_{\phi}$ for $\frac{H}{R} \ll 1$ this comes from hydrostatic equilibrium:
hydrostatic equilibrium
vertical disk structure, steady state

$$
\frac{1}{\rho} \frac{d P}{d z}=\frac{\partial}{\partial z}\left[\frac{G M}{\left(R^{2}+z^{2}\right)^{1 / 2}}\right] \quad \text { mom eq }
$$

non-self gravitating disk
for thin disk $z \lll$

$$
\begin{aligned}
\Rightarrow \frac{1}{f} \frac{d P}{d z} & =-\frac{1}{2} \frac{G-M 2 z}{\left(R^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{-G M z}{R^{3}}
\end{aligned}
$$

typical scale height of disk is H

$$
\text { So } \Rightarrow
$$

$$
U_{\psi}=\left(\frac{G-M}{R}\right)^{1 / 2}
$$

$$
\begin{aligned}
& \frac{1}{f} \frac{P}{H} \simeq-\frac{G M H}{R^{3}} \\
& \Rightarrow\left|C_{s}^{2}\right| \simeq\left|\frac{G M}{R}\right| \frac{H^{2}}{R^{2}}=V_{\phi}^{2} \frac{H^{2}}{R^{2}} \\
& \Rightarrow\left|C_{s}^{2} \ll U_{\phi}^{2} \Leftrightarrow H^{2}\right| R^{2} \ll \mid
\end{aligned}
$$

Steady Thin Disks

- radial structure in thin dish evolves: on viscous time sales $v=R^{2} / D=$ trine
- this presents another way turbulent viscosion is motivated:
even knowing nothing about disk properties, viscous time must be less than or equal age of sys presumed to be an accretotam
- Star forming dick ages \leq few \times ears
- If accretion is to explain observed features then mage $>$ tribe but for molecular viscosities $R=10^{14} \mathrm{~cm}, \quad C_{s} \simeq 10^{5} \mathrm{~cm} / \mathrm{s}, \ell_{\mathrm{mfp}}=10 \mathrm{~cm}$ $\Rightarrow R^{2} / \operatorname{cslom}^{2}=3 \times 10^{14} \mathrm{yr}$! too long \Rightarrow at least in YSO systems, accretion models require turbulent blum
- Ir many system we can around mass brax.dee rate changes on timescales longer than tribe
- system will adjust to steady sate Structure
- In steady state $-U_{R} \Sigma R=$ constant $=\frac{M}{2 \pi}$ from $\&$ momentum eqn (1133)

$$
\begin{align*}
& \frac{\partial}{\partial R}\left(\sum U_{R} R^{3} \Omega\right)=\frac{1}{2 \pi} \frac{\partial F}{\partial R} \text {, now interrte } \\
& \Rightarrow \quad \sum U_{R} R^{3} \Omega=\frac{G}{2 \pi}+\tilde{C} \\
& \text { note dumbo } \\
& \begin{aligned}
-7 & =-\frac{2}{2} \Sigma R^{3} \frac{\partial \Omega}{\partial R}+C \\
-\sum_{2} \frac{\partial \Omega}{\partial R} & =-M_{R} \Sigma \Omega+\frac{\tilde{C}}{R^{3}}
\end{aligned} \tag{147}
\end{align*}
$$

now, for $R=R^{*}$ (radius of Star)
U, which is \simeq le in ark most slow down to match to "star" which is rotating below beak -op $(\Omega<\Omega n)$. There is a thin bandayy layer where $\partial \Omega / \partial R \rightarrow 0 \underset{\sim}{\sim} \rightarrow$ this allows us to determine
it $R=R_{*}+b \quad b \ll R$

$$
\begin{aligned}
& \Omega(R+b)=\left(\frac{G M}{R \frac{11}{2}}\right)^{2 / 2}[1+O(b 1 R)] \\
& \left.\Rightarrow \check{C} \approx R_{*}^{3} \Sigma U_{R} \Omega\right|_{R_{*}+b} \text { from (47) } \\
& \Rightarrow \tilde{C}=\frac{-\dot{M}\left(G M R_{*}\right)^{1 / 2}}{2 \pi} \text {, (since } \bar{M}=\underset{\left.u_{n}<0\right)}{2 \pi R \& u_{n}}
\end{aligned}
$$

then plugging into (147)

$$
\Rightarrow-R V \sum \frac{\partial \Omega}{\partial R}=-V_{R} \Sigma \Omega R-\frac{\tilde{M}\left(G M R_{i}\right)^{2}}{2 \pi R^{2}}
$$

for $\Omega=\Omega_{k}, \frac{\partial \Omega}{\partial R}=-\frac{3}{2} \frac{\Omega k}{R}$, then divide by Ω :

$$
\begin{align*}
& \Rightarrow \frac{3}{2} \nu \Sigma=-\underbrace{V_{R}}_{R} \Sigma-\frac{\bar{M} R *^{1 / 2}}{2 \pi R^{1 / 2}} \frac{\Omega / K}{R} \\
& \Rightarrow V \Sigma=\frac{2 \dot{M}^{\frac{2}{2 \pi}}}{3 \pi}\left[1-\left(\frac{R *}{R}\right)^{1 / 2}\right] \tag{148}
\end{align*}
$$

1 mportant
recall

$$
\begin{align*}
& D(R)=\underbrace{\frac{1}{2}} \vee \underbrace{2}\left(R \frac{\partial \Omega}{\partial R}\right)^{2} \quad(\text { from page } 14 R \text {) } \\
& =\frac{1}{\partial K} \nu \sum \frac{9 \Omega^{2}}{4} \equiv \frac{9}{8} \nu \sum \Omega^{2} \\
& \Rightarrow \quad u \operatorname{sing}(148) \\
& D(R)=\frac{3 G M M}{H / R^{3}}\left[1-\left(\frac{R_{*}}{R}\right)^{1 / t}\right] \tag{149}
\end{align*}
$$

= energy loss rate par area from dissipation
notice it does not depend on viscosity except in combination $V \Sigma$, why?

$$
\bar{M}=-2 \pi v_{R} \sum R v-2 \pi \frac{V}{R} \sum R
$$

constant auction rate $\Rightarrow V \Sigma$ constant. Since \bar{M} determines energy disipata a low D can be compensate for high ε. (Amazing resit really...)

IWminostig cmite from $R_{1}<R<R_{2}$

$$
\begin{aligned}
& L\left(R_{1}, R_{2}\right)=2 \int_{R_{1}}^{R_{2}} D(R) 2 \pi R d R \\
& 2 \text { sdes } \\
&=\left.\frac{3 G M M}{2} \int_{R_{1}}^{R_{2}}\left[1-\frac{1}{R}+\frac{R_{7}}{R_{1}}\right)^{1 / 2} R^{2 / 2}\right|_{R_{4}} ^{\infty} \frac{d R}{R^{2}}
\end{aligned}
$$

let

$$
\begin{aligned}
& R_{1} \rightarrow \infty \\
& R_{2} \rightarrow R^{*}=\left[-\frac{11}{R}+\frac{2 R_{*}^{1 / 2}}{R^{3 / 2} R_{1}} R^{R_{2}}\right. \\
& \simeq \frac{G M M}{2 R_{*}}=\frac{1}{2} \frac{d U_{g}}{d t}
\end{aligned}
$$

($b^{\text {ther hat ha left for bandary la }}$ drespation; $\frac{1}{2}$ avallhe evergy, datitate in dish $\frac{1}{2}$ dissipated in boundary lager
\therefore Formal eye
conger radial component of momentum equation -

$$
\begin{equation*}
\therefore \frac{\partial L}{\partial R}-\frac{V^{2}}{R}+\frac{\partial P}{\partial R}+\frac{b}{R^{2}}=V_{t} \nabla^{2} V_{R} \tag{150}
\end{equation*}
$$

- Aurar static equill te to us $G_{s}^{2}=\frac{H^{2}}{R^{2}} V_{\psi}^{2}$
- Visors term is assumed small. Then:

$$
\begin{aligned}
& \Rightarrow \quad V_{R} \frac{\partial V_{2}}{R_{2}}-\frac{V_{2}^{2}}{R^{2}}+\frac{G M}{n^{2}}=0 \\
& V_{B}=\frac{-M}{A R}=-\frac{M J}{d R X}\left(1-(B)^{14}\right)^{-1} \\
& =-\frac{V}{R}\left(1-\frac{R e}{R}\right)^{-1} \text { from (if }
\end{aligned}
$$

$\rightarrow-V_{R} \approx O\left(\frac{\partial}{R}\right)_{\text {; }}$ then (150)

$$
\Rightarrow D=\alpha C_{s} H=7 \quad \frac{V_{k}^{2}}{R} \ll \frac{V^{2}}{R} \text { so }
$$

$V^{2} \simeq M_{\text {from }} \frac{150 p+10}{(150)}$

Spectrum from ace dish (opt thick)
Assume acc dish is optically thick:
$\tau_{\text {eff }} \equiv\left\langle k_{\text {eff }} \gg 1 ; k_{\text {eff }} \equiv \frac{\sigma_{\text {eft }}}{m_{p}}=\right.$ cross section for aphaten a absorption and Scattering
per mas.
surface density optical depth to abs + scattering (see Rÿbichi \& Lightman)
then at each radius it radiates as blackbody: $\sigma T^{4}(R)=O(R)$ (recall $D(R)$ is energy/time.ara $=$ flux)
then from $(149)=$

$$
T(R)=\left(\frac{D(R)}{\sigma}\right)^{1 / 4}=\left\{\frac{3 G M \bar{M}}{8 \pi R^{3} \sigma}\left[1-\left(\frac{R_{*}}{R}\right)^{1 / 2}\right]\right\}^{1 / 4}
$$

for $R>R_{*} \Rightarrow T(R)=T_{i}\left(R / R_{*}\right)^{-3 / 4}$

$$
\begin{aligned}
& T_{i}=\left(\frac{36 M \bar{M}}{8 \pi \sigma R_{8}^{3}}\right)^{1 / 4}=4 \times 10^{4}\left(\frac{\dot{M}}{10^{16 g} 1 \mathrm{~s}}\right)^{1 / 4}\left(\frac{M}{M_{\theta}}\right)^{1 / 4}\left(\frac{R}{10^{9}}\right)^{-3 / 4} K \\
& W D \\
& =10^{7}\left(\frac{\dot{M}}{10^{17 g 15}}\right)\left(\frac{M}{M_{\theta}}\right)^{1 / 4}\left(\frac{R}{10^{6} \mathrm{~cm}}\right)^{-3 / 4} K
\end{aligned}
$$

WD should be UV sources
NS should be X-ray Sources
Spectrum emitted by each element de ss olid $\begin{gathered}\text { cement } \\ \text { en }\end{gathered}$

$$
\begin{aligned}
& 工_{0}=B_{v}(T(R))=\frac{2 h)^{3}}{c^{2}\left(e^{h^{3} / h T(R)}-t\right)} \frac{\operatorname{erg}}{\cos ^{2}-\operatorname{Hit}-\operatorname{ster}} \\
& F_{j}=\int x_{v} \cos \theta d f \\
& \simeq \int_{R_{*}}^{R_{\text {out }}} I_{v_{f}} \cos \theta \frac{2 \pi R d R}{d^{2}} \\
& \text { (using } \\
& \left.d^{2} d G=2 \pi R d R\right) \\
& =\frac{2 \pi \cos \theta}{d^{2}} \int_{R_{*}}^{R_{\text {out }}} I_{j} R d R \\
& \text { to observer } \\
& \cos \theta \text { factor }
\end{aligned}
$$

$$
\begin{aligned}
& -F_{v_{s}}=\frac{2 \pi \cos \theta}{D^{2}} \frac{4 \pi h}{C^{2}} V_{f}^{3} \int_{R_{B} e^{R_{0} t} \frac{R d R}{C^{2}(h \tau R)}-1} \\
& T(R)=T_{i}\left(\frac{R}{R_{H}}\right)^{-3 / 4} \\
& x=\frac{h V_{t}}{k T(R)}=\frac{h \nu_{ \pm}}{k T_{\text {out }}}\left(\frac{R}{R_{D_{0}}}\right)^{3 / T} \\
& \text { plot } F_{V_{f}}\left(V_{f}\right) \\
& \frac{d x}{d R}=\frac{3}{4} \frac{h \sqrt{4} R_{0 \sim t}}{h T_{0 L}}\left(B_{0}^{-1}\right) \\
& R=x^{4 / 3} R_{\text {out }}+\left(\frac{L_{2} T_{0} L_{0}}{h_{f}}\right)^{4 / 3} \\
& R d R=\frac{4}{3} \frac{n T_{0}}{h \Delta t} R_{0}+\left(R_{R_{0}}\right)^{1 / 4} R d x \\
& =\frac{4}{3} \frac{v \pi T_{0}+R^{5 / 4}}{4 v+R_{001}^{1 / 4}} d x \\
& =\frac{4}{3} \frac{k T_{0}}{h V_{f}} x^{5 / 3}\left(\frac{k T_{f}}{h V_{f}}\right)^{5 / 3} d x \\
& =\frac{4}{3}\left(\frac{h T_{00} t}{h / 5}\right)^{8 / 3} x^{8 / 3} d x
\end{aligned}
$$

$$
\begin{aligned}
& \log \left(h J \mid k T_{\text {out }}\right)\binom{\text { Stretched out }}{\text { black body }}
\end{aligned}
$$

Toward MHD from a two -fluid approach
consider multiparticle phenomena in a plasma on scales much
larger than Debug Length and time scales much larger than plasma frequency; then charge separation in plasma can be neglected. $\left.\lambda_{D}=\left(\frac{h T}{8 \pi n e^{2}}\right)^{1 / 2}, \omega_{p, e}^{2}=\frac{4 \pi n e^{2}}{m_{e}}\right)$
But: when considering long time scales collisions cannot be neglected. Here I will address the derivation of collisional MHD Starting from two-fluid approach, and also modeling the collision contributions.

In a two fluid approach, we consider
a' fully ionized plasma of protons and electrons. The protons, are treated as one 'fluid and the electrons as another ;id.
consider c^{-}fluid first:
collisions between them do not change . ie e^{-}fluid manentum: only when e^{-} and ions collide is momentum transferred.
Thus, the equations for the electron fluid, (to firstorder) is given by (assuming $n=n_{-}=n_{+}$).

$$
m_{e} n \frac{\partial \vec{V}_{e}}{\partial t}=-\nabla p_{e}-\eta e\left(E+\frac{\vec{V}_{e}}{c} \times B\right)-m_{e} n V_{c}\left(\vec{V}_{e}-\vec{V}_{i}\right) \quad(251)
$$

Where n is number density, v_{c} is a collision frequency between electrons and ions. For the moment we neglect the. fluid viscosity and will restore it later. Eqn (251) is basically the fluid equation like an Euler eqn for electrons with the extra v_{c} term and dropping the $V_{e} \nabla V_{e}$ term on the grounds that it is second order.
Since the current density: $j \equiv \operatorname{ne}\left(\overrightarrow{V_{i}}-\vec{V}\right)$
(2514)
the last term in (251) is proportional to the current density, thus:

$$
\begin{align*}
& m_{e} n \frac{\partial V_{e}}{\partial t}=-\nabla \rho_{e}-n_{e}\left(\vec{E}+\frac{\vec{v}_{e}}{c} \times \vec{B}\right)+n_{e \eta} \vec{j} \quad(25 \alpha) \\
& \text { with } \eta=\frac{m_{e} J_{c}}{n e^{2}} \tag{253}
\end{align*}
$$

η can be explained as follows:
consider homegereoss (uniform) plasma in steady-state with \vec{E}-field driving a current \vec{J}. Then (25α) becomes

$$
\begin{equation*}
-n e \vec{E}+n e \eta \vec{J}=0 \tag{254}
\end{equation*}
$$

so that

$$
\begin{equation*}
\vec{E}=\eta \vec{J} \tag{255}
\end{equation*}
$$

$\Rightarrow \eta$ is the plasma resistivity.
Tu. calculate it, we need expression for U_{c}.
To get the collision frequency, consider an approximate approach: If the impact parameter between e^{-}and p is large then minimal deflection takes place. Thus define impact parameter r_{0} for which e^{-} deflection is sufficiently large to charge its momentum by of order its original r. omentum.
to estivate r_{0}, let u be 'ypical relative velocity between the proton \& e_{j} ' so that r_{0} / u is effective interaction time. Since. Strangest interaction force is $\frac{e^{2}}{r_{0}^{2}}$, the impulse $(=F \cdot \Delta t)$

$$
\begin{equation*}
=\frac{e^{2}}{r_{0}^{2}} \frac{r_{0}}{u}=\frac{e^{2}}{r_{0} u}=\Delta p \tag{256}
\end{equation*}
$$

by definition of $r_{0}, \Delta p=p=m_{e} u$ co that $r_{0}=\frac{e^{2}}{m_{e} u^{2}}$
Moreover, the effective collision cross section is given by $\pi r_{0}{ }^{2}$, thus the collision frepency $=$

$$
\begin{equation*}
V_{L}=n \sigma u=n \pi r_{0}^{2} u=\frac{\pi n e^{4}}{m_{e}^{2} u^{3}} \tag{258}
\end{equation*}
$$

using (257). For thermal velocities, plug in $u=\left(\frac{k_{6} T}{m e}\right)^{1 / 2}$ and (258) gives:

$$
\begin{equation*}
V_{l}=\frac{\pi n e^{y}}{m_{e}^{1 / 2}\left(k_{B} T\right)^{3 / 2}}, \tag{259}
\end{equation*}
$$

Using (259) in (253)

$$
\begin{equation*}
\therefore \eta=\frac{\pi m_{e}^{1 / 2} e^{2}}{\left(k_{B} T\right)^{3 / 2}} \tag{260}
\end{equation*}
$$

A rigovous calculation (spitzer \&Härm 1953)

the extra factor is typically of order $1-10$,

Thus the rough treatment at least gets the basic scalings reasonably well.
For $z=1$, proton-election plasma, the sptizer resistivity is

$$
\eta=7.3 \times 10^{-9} \frac{\ln \Lambda}{T^{3 / 2}} \sec \quad(262)
$$

Now, having obtained η, let us consider equation of motion for the ion fluid

The collision term in the ion equation should be equal and of opposite sign to that in the e^{-}equation, since momention is exchanged between the two. Thus

$$
\begin{equation*}
m_{i} n \frac{\partial \vec{V}_{i}}{\partial t}=-\nabla p_{i}+n e\left(\vec{E}+\frac{\vec{V}_{i}}{c} \times \vec{B}\right)-n e n \vec{J} \tag{263}
\end{equation*}
$$

(where again we worked to first order in \vec{V} so $\vec{V}_{i} \cdot \vec{\nabla} v_{i}$ is neglected).
Now we combine (263) with (25λ) to get a 1 fluid wodel:
the total density and net fluid, velocity are

$$
\begin{align*}
& \rho=n\left(m_{i}+m_{e}\right) \\
& \vec{V}=\frac{m_{i} \vec{V}_{i}+m_{e} \vec{v}_{e}}{m_{i}+m_{e}} \tag{265}
\end{align*}
$$

$$
(264)
$$

then adding (263) and $(25 \lambda) \Rightarrow$

$$
\begin{align*}
& n \frac{\partial}{\partial t}\left(m_{i} V_{i}+m_{e} V_{e}\right)=\frac{n e\left(\vec{V}_{i}-\vec{V}_{e}\right)}{c} \times \vec{B}-\nabla\left(p_{i}+\rho_{e}\right) \\
& \rightarrow \text { or, using }(264),(265) \& j=n_{e}\left(\vec{V}_{i}-\vec{v}_{e}\right): \\
& \rho \frac{\partial \vec{V}}{\partial t}=\frac{\vec{j} \times \vec{B}}{c}-\nabla p \tag{266}
\end{align*} \quad(266) .
$$

where $p \equiv p_{i}+p_{e}$.
Now, actually the pressure is really a tensor, as we discussed early in the course in deriving the hydrodynamic equations. the pressure tensor was given by

$$
\begin{array}{r}
P_{i j}=n m\left\langle V_{i} V_{j}\right\rangle-n m \bar{V}_{1} \bar{V}_{j} \\
\tau_{\text {this }}
\end{array}
$$

this term was neglected in our present approach. When it is not neglected, (266) becomes

$$
\begin{equation*}
\rho \frac{\partial \vec{v}}{\partial t}=-\vec{V} \cdot \nabla \vec{v}-\nabla \rho+\underbrace{\vec{j} \times \vec{B}}_{\text {mauneti }} \tag{267}
\end{equation*}
$$

magnetic term
now added to Euler equation
Note \vec{E} force has disappeared. Note also Hat the Navies - Stones eqn had is line the Euler eqn but with the added viscosity term that resulted from deviations from maxuellian. The derivation of that term would proved the same had we started from the Boltzmann eau or e^{-}and protons separately in deriving (252) and (263). Thus I will add the term
without a rigorous deviation Thus the
momentum equation for single fluid MHD 1) given by

Now (268) was derived by taking the sum of e^{-}\& ion fluid equs. By taking the difference, we get an expression for the electric field in terms of the $\vec{V} \& \vec{B}$. such a relation is needed when the mapreto-fluid equations are combined with maxwell's equations.
multiplying $\left(257_{3}\right)$ by m_{i} and subtracting (263) multiplied by me gives:

$$
\begin{aligned}
& \text { 263) multiplied by } \\
& \begin{aligned}
m_{i} m_{e} n \frac{\partial}{\partial t}\left(\vec{V}_{i}-\vec{V}_{e}\right) & =n e\left(m_{i}+m_{e}\right) \vec{E}+\frac{n e}{c}\left(m_{e} \vec{V}_{1}+m_{i} \overrightarrow{v_{e}}\right) \times \vec{B} \\
& -m_{e} \nabla p_{i}+m_{i} \nabla p_{e}-\left(m_{i}+m_{e}\right) n e \eta \overrightarrow{)}
\end{aligned}
\end{aligned}
$$

Using $(264),(265),(25(a)$ and

$$
\begin{align*}
m_{e} \vec{v}_{i}+m_{i} \vec{v}_{e} & =m_{i} \vec{v}_{i}+m_{e} \vec{v}_{e}+\left(m_{e}-m_{i}\right)\left(\vec{v}_{i}-\vec{v}_{e}\right) \\
& =\frac{\rho}{n} \vec{v}+\frac{m_{e}-m_{i}}{n e} \vec{\jmath} \tag{2+70}
\end{align*}
$$

we get from (269)

$$
\begin{align*}
& \vec{E}+\frac{\vec{v}}{c} \times \vec{B}=\eta \vec{J}+\frac{1}{e g}\left[\frac{m_{e} m_{i} n}{e} \frac{\partial}{\partial t}\left(\frac{\vec{J}}{n}\right)+\left(m_{i}-m_{e}\right) \frac{\vec{J} \times \vec{B}}{c}\right. \\
&\left.+m_{e} \nabla p_{i}-m_{i} \nabla p_{e}\right] \tag{270}
\end{align*}
$$

This is the Generalized Ohm's law.
when system changes on time scales long compared to collision time the $\frac{\partial}{\partial t}\left(\frac{j}{n}\right)$ term is small compared to $n \vec{j}$ term. inen $(270) \Rightarrow$

$$
\begin{aligned}
\vec{E}+\frac{\vec{v}}{c} \times \vec{B}=\eta \vec{J} & +\left(m_{i}-m_{e}\right) \frac{\vec{J} \times \vec{B}}{c} \\
& +m_{e} \nabla p_{i}-m_{i} \nabla p_{e} \quad(271)
\end{aligned}
$$

often in astro the Hall Effect term $\left(m_{i}-m_{C}\right) \frac{j \times B}{<}$ and the pressure gradient terms are ignorable compared to ηj. Thus in many cases

$$
\begin{equation*}
\vec{E}+\frac{\vec{v}}{l} \times \vec{B}=\eta j \tag{272}
\end{equation*}
$$

is the appropriate Ohm's Law. (Note that for pair plasma, there is no Hall effect

Collecting the important equations:

$$
\begin{aligned}
& (-68) \rightarrow \\
& \rho \frac{\partial \vec{v}}{\partial t}=-\vec{v}-\nabla \vec{v}-\nabla p+j \times B+J \nabla^{2} \vec{v}
\end{aligned}
$$

(272) \rightarrow

$$
\vec{E}+\frac{\vec{v}}{c} \times \vec{B}=n j
$$

mass continuity (same as for unmagretited fluids)

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho v)=0 . \tag{273}
\end{equation*}
$$

Recall that for incompressible flows, we cont reed to worry about the energy equation. most ot the MHD we will consider full be incompres bl
we this have time evolution eq for v, ρ and we have eqn that relates E to B, but we reed equation for $\partial_{t} \vec{B}$. This comes from combining (272) with maxwell's equations: Note that from Maxwell's eqns:

$$
\begin{align*}
& \frac{1}{C} \frac{\partial \vec{B}}{\partial t}+\nabla \times \vec{E}=0 \tag{274}\\
& \nabla \times \vec{B}+\frac{1}{C \frac{\partial \vec{E}}{\partial t}}=4 \frac{\vec{l}}{C}
\end{align*}
$$

$$
(275)
$$

combining $(273) \&(274)$

$$
\Rightarrow \quad \frac{\partial B}{\partial t}=\nabla \times(v \times B)-G \nabla \times \eta \vec{J} \quad(\partial 76)
$$

we then use (275) :

$$
\nabla \times j=\underbrace{\frac{c}{4 \pi} \nabla \times \nabla \times B}_{\theta\left(\frac{c}{l^{2}} B\right)}+\underbrace{\frac{1}{4 \pi} \frac{\partial(\nabla \times E)}{\partial t}}_{\theta\left(\frac{V}{l C t}\right)} \quad(277)
$$

this
ratio of (1) $\left\lvert\,(1) \approx \frac{c^{2} t}{l v} \simeq \frac{c^{2}}{v^{2}}\right.$
thus we ignore (2) \Rightarrow

$$
\begin{aligned}
& \Rightarrow(277) \\
& =\frac{c}{4 \pi} \nabla \times \nabla \times B=-\frac{c}{4 \pi} \nabla^{2} \vec{B} \quad(278)
\end{aligned}
$$

(278) into $(276) \Rightarrow$

$$
\begin{aligned}
\frac{\partial B}{\partial t} & =\nabla \times(v \times B)+\frac{\eta^{2} \nabla^{2} \vec{B}}{4 \pi} \\
& =\nabla \times(v \times B)+\nu_{m} \nabla^{2} \vec{B}
\end{aligned}
$$

for $\nabla_{\eta}=0$. (274) is Magnetic Induction Eqn

Basic Magnetohydrodynamics (ant)
The momentum equation as derived last time, now has the additional $\vec{J} \times \vec{B}$ term. This magnetic force can be rewritten using $\nabla \times B=\frac{4 \pi \vec{J}}{C} \quad$ (From maxwell') equations for non-relativistic flows.)
Thus:

$$
\begin{align*}
\vec{J} \times \vec{B} & =\frac{\varepsilon}{4 \pi} \frac{j \times B}{t}=\frac{1}{4 \pi}(\nabla \times B) \times B \tag{280}\\
& =\frac{1}{4 \pi}\left(\varepsilon_{i j k} \partial_{j} B_{k}\right) \varepsilon_{\min } B_{n} \\
& =\frac{1}{4 \pi}\left(\delta_{j n} \delta_{k m}-\delta_{j m} \delta_{n n}\right) B_{n} \partial_{j} B_{k} \\
& =\frac{1}{4 \pi} \vec{B} \cdot \nabla \vec{B}-\frac{1}{8 \pi} \nabla B^{2} \tag{281}
\end{align*}
$$

thus we can write the MHD menentum

$$
\left\{\begin{array}{l}
\text { equation } \\
\frac{\partial \vec{V}}{\partial t}=-\vec{V} \cdot \nabla \vec{V}-\nabla(P+\underbrace{P_{\text {mag }}}_{=\frac{B^{2}}{8 \pi}})+\frac{(\vec{B} \cdot \vec{\nabla}) \vec{B}}{4 \pi}+\nu \nabla^{2} \vec{V}+\vec{F} \tag{282}
\end{array}\right.
$$

acts as additional pressure; what about $\frac{\vec{B} \cdot \nabla \vec{B}}{4 \pi}$?
we can show that $\vec{B} \cdot \nabla \vec{B}$ acts as a tension force: consider ne tensor $M_{i j}$ detived such that

$$
\begin{equation*}
M_{i j}=\frac{B^{2}}{8 \pi} \delta_{i j}-\frac{B_{i} B_{i}}{4 \pi} \tag{283}
\end{equation*}
$$

so that $(J \times B)_{i}=-2-M_{i j}$
from (281), and $\vec{\nabla} \cdot \vec{B}=\partial_{i} B_{i}=0$.
Suppose we choose the \hat{z} axis as the local direction of the magnetic field. Then from (os):

$$
l_{i j}=\left(\begin{array}{ccc}
B_{2}^{2} / 8 \pi & 0 & 0 \tag{285}\\
0 & B_{2}^{2} / 8 \pi & 0 \\
0 & 0 & -\frac{B_{2}^{2}}{4 \pi}
\end{array}\right)=
$$

This shows that 1 to the field lassumed to be only in z-direction), there is a pressure $\frac{B_{z}^{2}}{8 \pi}$, so that force in $\hat{x} \notin \hat{y}$ directions are $-\partial_{j} M_{x j}=-\partial_{x} \frac{B_{z}^{2}}{8 \pi}=-\nabla_{x} \rho_{m y}$ and

$$
\begin{equation*}
-\partial_{j} M_{y j}=-\partial_{y} \frac{B_{z}^{2}}{8 \pi}=-\nabla_{g} P_{r a g}(287) \tag{286}
\end{equation*}
$$

but along the \hat{z} direction Force is: $\quad-\partial_{j} M_{z j}=+\nabla_{z} \frac{B_{z}^{2}}{4 \pi} \quad$ (288)
This corresponds to a force that increases in the direction of increasily B_{z}. This.
is a tension force that resists stretching much like a rubber band. Note that the pressure force $\perp B_{z}$ is in the dilution of decreasing B_{z}^{2}, just like particle pressure force, whereas the tension force is in. The direction of increasing B_{z} along the field line.
Having discussed the physical meaning of the terms in the warrentum eqn let us consider some aspects of the magnetic induction equation:

$$
\begin{equation*}
\partial_{t} B=\nabla \times v \times B+V_{m} \nabla^{2} \vec{B} \tag{289}
\end{equation*}
$$

First, note that the order of magnitude ratio of he list term on the right, to the second Hermon the right is given by \rightarrow

$$
\begin{equation*}
R_{M} \equiv \frac{V \mathbb{B} / L}{J B / L^{2}}=\frac{L V}{D_{m}}=\underset{\substack{\text { Magnetic } \\ \text { Reynolds Number }}}{\text { mag ditusivity }} \tag{192}
\end{equation*}
$$

where $V_{j} L$ are characteristic velocities a scale of field variation in problem of interest. (R_{M} is reminiscent of the the Reyuslds number for hydrodynamic flows $\frac{L V}{V_{R}}$

From $(27 q)$ \&. (26p)

$$
\begin{equation*}
V_{m}=5.5 \times \frac{10^{11}}{T^{3 / 2}} \ln \Lambda \tag{291}
\end{equation*}
$$

which is $J_{m} \simeq 10^{7} \mathrm{~cm}^{2} / \mathrm{s}$ for $T=10^{4} \mathrm{k}, \ln \Lambda=10$.
For a laboratory system, $L \simeq 10^{2} \mathrm{~cm}, V \simeq 10 \mathrm{~cm} / \mathrm{s}$

$$
\Rightarrow R_{m} \simeq 10^{-4} .
$$

For solar convection zone, $L \simeq 10^{8} \mathrm{~cm}, V \simeq 10^{5} \mathrm{~cm}$ $\Rightarrow R_{m}=10^{6}$. Die to smaller scales and Velocities involved, but. temperatures that need not be hugely different, typically lab R_{m} much smaller that astro Rm, and usually R_{m} in astrol $\gg 1$.

For large R_{m}, the V_{m} term can be ignored in the induction equation under most circumstances (but not all!). This leads to concept of flux freezing in astrophysics: (similar to kelvin circulation theorem)

To prove: consider flux $\int \vec{B} \cdot d \vec{S}$ through closed contour C, moving with the fluid. Initial position at time t is closed contour C, and after time δt it has undergone displacement $\vec{V} \delta t$ to new position C^{\prime}. Let $d \dot{S}_{c}$ be area element on C and $d \vec{S}_{c}^{\prime}$, be area element on c. The area elemut with outward normal (shaded) is given by $d \vec{l} \times \vec{V} \delta t$. Now $\nabla \cdot \vec{B}=0$ implies that $\int \nabla \cdot B d V=\oint \vec{B} \cdot d \vec{S}=0$. integrated around the closed cylinder. Thus

$$
\begin{array}{ll}
\int_{C} d \vec{S}_{C} \cdot B(t+\delta t)-\int_{C^{\prime}} d \vec{S}_{C}^{\prime} \cdot \vec{B}(t+\delta t)-\int_{C} \vec{B}(t+\delta t) \cdot(d \overrightarrow{\vec{C}} \times \vec{v} \delta t)=0 \\
\text { Now: } \\
\text { N } & =092) \tag{293}\\
&
\end{array}
$$

which, using (292), becomes

$$
\begin{aligned}
& \int \Phi \equiv \int_{C} d \overrightarrow{S_{C}} \vec{B}(t+\delta t)-\int_{C} \vec{B}(t+\delta t) \cdot(d \vec{l} \times \vec{v} \delta t)-\int_{C} d \overrightarrow{S_{i}} \vec{B}(t) \\
& \text { (294) } \\
& =\delta t[\int \frac{\partial \vec{B}}{\partial t} \cdot d \vec{S} \vec{S}_{c}-\underbrace{\int \vec{B}(t+\delta t) \cdot(d \vec{l} \times \vec{V})}_{\approx \int B(t) \cdot(d \vec{l} x \vec{v})} \text { for small } \delta t) \\
& \Rightarrow \quad=\delta t\left[\int\left(\vec{\nabla} \times(\vec{V} \times \vec{B})+V_{m} \nabla^{2} \vec{B}\right) \cdot d \vec{S}_{C}-\int B(t) \cdot(d \vec{l} \times \vec{V})\right]
\end{aligned}
$$

from (279)

$$
\left.=\delta t\left[\int(\vec{v} \times \vec{B}) \cdot d \vec{l}+\int \nu_{m} \nabla^{2} \vec{B} \cdot d \overrightarrow{S_{c}}\right]-\int B(t) \cdot(d \vec{l} \times \vec{v})\right]
$$

But $(\vec{V} \times \vec{B}) \cdot d \vec{l}=\vec{B} \cdot d \vec{l} \times \vec{v}$ (vector idutily)
so

$$
\Rightarrow \delta \Phi=\delta t \int V_{m} \nabla^{2} \vec{B} \cdot d S_{c}
$$

(295)
or $\frac{d \Phi}{d t}=\int U_{m} \nabla^{2} \vec{B} \cdot d S_{c} \Rightarrow$ for $R_{m} \gg 1$

$$
\frac{d \Phi}{d t}=0 \equiv \frac{\text { Flux rueczing }}{\longrightarrow}
$$

Flux freezing is simply the staterat that the magnetic field wolves with the plasma so as to maintain $\int \vec{B}-d \vec{S}=$ constant with time. If flux freezing were to apply during the collapse of a star line the sun, could it be a simple explanation for the origin of Neutron star inagnetic fields? The sun has a mean field of older 2-10 Gauss. Flux freezing from $R_{0}=10^{11} \mathrm{~cm}$ to $R_{N S}=10^{6} \mathrm{~cm}$ implies an increase in field strength of order $\frac{R_{N S}^{2}}{R_{\theta}{ }^{2}} \Rightarrow B_{N S} \leq 10^{11}$ Gauss. Not bad. Many people believe this is possible, but others seel that young NS incur nectrivo driven turbulent convection - hich can destroy the frozen in field with enhanced diffusion but also generate new fred by dynamo action.

Magnetokydrostatics
As simple examples of MHD, consider time independent, velocity free equilibria:

$$
\begin{equation*}
\theta^{f}-\nabla p+\frac{1}{4 \pi}(\nabla \times B) \times B=0 \tag{296}
\end{equation*}
$$

Consider Body forces $=0 \Rightarrow$?

$$
\begin{equation*}
\nabla p=\frac{1}{4 \pi}(\nabla \times B) \times B \tag{297}
\end{equation*}
$$

A magnetic field satisfying. (297) is alled a pressure balanced field.

An important dimensionless parameter is the plasma beta:

$$
\begin{equation*}
\beta \equiv \frac{P}{B^{2} / 8 \pi} \tag{298}
\end{equation*}
$$

often in lab, $\beta \ll 1$. In astrophysics, the definition of "coronal" for MHD people is often taken to be the region in stellar atmospheres or above accretion discs above which, β drops below 1.

Note that when $\beta \ll 1,(297)$
becomes $(\nabla \times B) \times B=0=\vec{J} \times \vec{B}$
This is called the force-free condition and implies that the magnetic pressure and tension forces conspire to balance. Note also that $J \times B=0$ $\Rightarrow \quad J \| B$, so that $\vec{\nabla} \times \vec{B} \| \vec{B}$.

Now consider an example of a nessure balanced column. We work in cylindrical coordinates, assuming cylindrical symmetry (ne variation in θ, z). Then from $\nabla \cdot B=0 ; \frac{1}{r} \partial_{r}\left(B_{r} r\right)=0$ or $B_{r}=\frac{\text { constant }}{r}$ but in order not to diverge at $r=0$, constant must be zero. Thus $B_{r}=0$.
We then write

$$
\begin{equation*}
\vec{B}=B_{\theta}(r) \hat{e}_{\theta}+B_{z}(r) \hat{e}_{z} \tag{301}
\end{equation*}
$$

using 301 in $297: \Rightarrow$

$$
\begin{aligned}
& \frac{\partial \rho}{\partial r}=\frac{1}{4 \pi}\left(-\frac{\partial B_{z}}{\partial r} \hat{e}_{\varphi}+\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{\varphi}\right) \hat{e}_{z}\right) \times \vec{B} \\
&=\frac{1}{4 \pi}\left(-\frac{1}{\partial} \frac{\partial B_{z}^{2}}{\partial r}-\frac{1}{\partial(} \frac{\partial\left(B_{p}^{2}\right)}{\partial r}-\frac{B_{\varphi}^{2}}{r}\right) \\
& \Rightarrow \frac{\partial}{\partial r}\left(\rho+\frac{B_{\varphi}^{2}}{8 \pi}+\frac{B_{z}^{2}}{8 \pi}\right)+\frac{B_{\varphi}^{2}}{4 \pi r}=0(30
\end{aligned}
$$

assuming $p=\rho(r)$. Now consider that the magnetic field in the plasma column is produced by driving a current $j=j(r) \hat{e}_{z}$ along the axis of the
 column. This would only produce a field in the toroidal direction since

$$
\begin{aligned}
& \text { toroidal direction since } \\
& \frac{c}{4 \pi} \nabla \times B=J_{z} \text { and } B_{r}=0 \Rightarrow \vec{B}_{c}{ }_{l}^{k_{1}^{3}=z_{i} r} \\
& k_{n}
\end{aligned}
$$

this relation is then

$$
\begin{equation*}
\frac{1}{r} \frac{d}{d r}\left(r B_{\varphi}\right)=\frac{4 \pi)_{r}}{c} \tag{303}
\end{equation*}
$$

If we now assume constant $j(r)=j$, so that $\partial_{r} j=0$, then we can integrate (303):

$$
\Rightarrow \quad B_{\varphi}=\frac{2 \pi j_{z}}{c} r
$$

plugging into $(302) \Rightarrow$

$$
\frac{d}{d r}\left(p+\frac{4 \pi x^{2} j^{2}}{c^{2}} \frac{j^{2}}{z^{2}}\right)+\frac{j^{2} r \pi}{c^{2}}=0
$$

or $\frac{d}{d r} p=-\frac{2 \pi}{c^{2}} r j^{2}$

$$
\Rightarrow \quad p=p_{0}-\frac{\pi r^{2}}{c^{2}} j^{2} \quad \text { (tor constant) } \quad \text { (305) }
$$

 p drops as Be increases suggesting that pressure is concentrated by the "hoop pinch force" of the Be field.
\Rightarrow MAGNETIC COLLATION OF JETS IN ASTHO!

Stability of plasma columns
physical considerations allow one to intuit the stability or instability of a plasma column. Detailed calls required, but consider the perturbations below:
 plasma column
crowding of B-field lines at point P enhances magnetic pressure there and pushes plasma column so as to enhance
 In the second fig,, B_{O} at Q is larger than its Value away from the perturbed pinch. The "ira tension pinches further and system is unstable to SAUSAFE INSTABILITY

An Axial field can surpiess these - stabrlities: As the mink bends the field column, the axial field tension resists the bending. Similarly, for the sausage case, the wapratic pressure associated with the axial field resists the pinching. $B_{a x i a l} \geq B_{0}$ is requivel to stabilize the instabilities.

Fusion \& plasma confinement
Dominew fusion reaction desived is 2 deuterium atoms \rightarrow tritium or Helium t energy Coulomb forces repulse the deuterium atoms so the must have high enough relative velocity to penetrate coulomb barrier to fuse. This requires not plasma
... But high temp daterim $\left(710^{7} \mathrm{k}\right)$ canot he easily confined. It would burn container walls it too dense. And, if too diffuse, it would quickly lose heat content with the wall. \Rightarrow hope is to confine plasm e with magnetic fields. Push far forme devices was initiated by US, un, ussen after ww II.

Expectation was that commercial noduction possible in a few years but its 60 years later and still a long way off. confining was more difficult than expected and a lot of energy is always lost in heativa of setting up the configurations.
incorder to get suffiint energy out of fusion, plasma must be confined for a time such that the product of the number dussity and contriement time τ, satisfies
$n \tau>10^{16} \mathrm{sec} \mathrm{cm}^{-3}$. (:called Lawson criterion).
Typical magnetic devices have $n \tau=\left(\frac{10^{15}}{\mathrm{~cm}^{3}}\right.$ o.1 sec) $=\frac{10^{14}}{i \mathrm{~m}^{3}} \mathrm{sec}$ too small by about 2 -orders of magnitude.
in the laser lab, the idea is to make n very large even tough τ is short. $\tau \sim 10^{-10} \mathrm{sec}$ so n has to be $10^{26} \mathrm{~cm}^{-3}$, but such high densities are not yet reached. The system falls short g in part due to the Rayleigh. Taylor Instability. Mupretic contrenent still seems like best hope. Devices are typically toroidal plasma columns, which avid edges: by allowing plasure to close on itself.

Key reason for the difficulty in continent is plasma lastabilities, which induce plasma in the cove region to diffuse prematurely to the walls.

torus confinement egg. To human

Core is region inside the pinch where plasma is confine between the inner and outer walls.

Cpolar magmatic regions and buoyant
Hale (1908) realized sunspots were associated with memetic fields, and in 1919 noticed that often two large sunspots appear side by side with opposite polarities. The obvias explanation is that the dial spots represent places where mapretic field penetrates the solar surface:

(a)

Inside convection zone, field is ashed toward boundaries of correction cells for example, consider a region of field embedded in a velocity flow:

fit t the last figure, and, imagine it is imbedded insun:
$\downarrow \vec{g} \uparrow \hat{r}$
we can see Mat we have segregated flux tubes.
the top part can represent fig (\$) on the previous page. Now, why should such a structure become buoyant, and rise through solar surface to corona?
consider a horizontal flux tube with aedes pressure p_{i} inside the tube and tet Pe_{e} be the external pressure
equation of motion without velocity field but with gravity, pressure, and \vec{B} is

$$
\frac{1}{4 \pi}(\vec{B} \cdot \vec{\nabla}) \vec{B}=\nabla\left(\frac{B^{2}}{8 \pi}+p\right)-\rho \vec{g}
$$

consider flux tube of strength $\vec{B}=B_{0} \hat{x}$ in Vertically stratified atmosphere Left side vanishes. In this situation. If tube is in pressure balance with surroundings then

$$
\begin{equation*}
P_{e}=P_{i}+\frac{B^{2}}{8 \pi} \tag{306}
\end{equation*}
$$

wave P_{e} is extamal pressure and P_{i} is internal gas pressure. Then $\rho_{i}<\mathrm{Pe}$. If tube is in thermal eqvilit with surrounding then $\rho_{i} \angle \rho e$ or

$$
n_{i} h T=P_{i}=P_{e}-\frac{B^{2}}{8 \pi}=n_{e} h T-\frac{B^{2}}{8 \pi}
$$

$$
\begin{aligned}
& \Rightarrow n_{i}=n_{e}-\frac{B^{2}}{8 \pi k T}, \quad \text { grave. fore } \\
& \text { thus } F_{\text {buy }}=\left(n_{e}-n_{i}\right) m_{i} g V=\frac{B_{0}^{2} m_{H} g V^{t}}{8 \pi k T}
\end{aligned}
$$

$$
(307)
$$

is the up wart force. Now $\frac{h I}{m g}$ is scale height so

$$
\begin{equation*}
F_{\text {buoy }}=\frac{B^{2} V}{8 \pi H} \tag{309}
\end{equation*}
$$

cher rising distance H, tube gets hieratic erengy
"Fiboy. $H=\frac{B^{2}}{8 \pi} V=\frac{1}{2} \rho_{i} V U^{2}$, so $U=$ velocity of tube is $\left.\simeq u=\left(\frac{8 \pi}{4 \pi}\right)^{\frac{R^{2}}{4}}\right)^{1 / 2}=V_{A, \text { tube }}=$ AliNe speed of tube

When the temperatures inside and outsize "e tube are not equal, the entire tube may not rise up, since then ρ_{i} at that location may not neusscnily be $<\rho_{e}$, since $\mathrm{P}_{i}<\mathrm{Pe}_{\mathrm{l}}$ can be satisfied by $\rho_{e}<\rho_{i}$ if $T_{i}<T_{e}$. (buoyancy requires $\rho_{i}<\rho_{e}$).

On the sim, most bipolar regions are roughly aligned parallel to the solar equator In northern hemisphere, when t polarities are to right of negative polarity, in the south, - polarities are to the right of t polarities. Thus each ot the northern \& southern hemispheres typically show an rposite sign of leading trailing polarity system, an: the pattern reverses every 11 years: egg.

How can this situation arise? :
First, the sun is not rotating uniformly, but differentially, faster at equator, so that

α thus buoyancy would naturally produce opposite trailing and leading polarity patterns in each hemispleve as on previous page.

Second, there is the solar cycle:

Angular momentum transport a magnetic fields:
Magnetic fields can help transport angular momentum. To see this, first prove a theorem:
Ferraro's law of isorotation: consider rotating object symmetric around rotation axis. Using cylindrical lords, this implies

$$
\begin{equation*}
V=r \Omega(r, z) \hat{e}_{\theta} \tag{311}
\end{equation*}
$$

- depentut of θ. Suppose object has axisymmetric poloidal field, frozen into plasma. Steady state is possible only if Ω is constant along field lines: proof: A poloidal (r, z) field indepundut if θ can be written as curl of rector potential A_{0} and in the form: (cylindrical words)

$$
\begin{equation*}
\vec{B}=\left(\nabla x\left(\frac{1}{r} \psi(r, z)\right) \hat{e}_{\theta}\right) \tag{312}
\end{equation*}
$$

then

$$
\begin{equation*}
B_{r}=-\frac{1}{r} \frac{\partial \psi}{\partial z}, \quad B_{z}=\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{313}
\end{equation*}
$$

ψ is 1 to field lines. Now let $d r, d z$ repiesut 'displacements along streamlines of \vec{B} (ie. curves which hare tangents $\|(\vec{B}$)
then $\frac{d r}{B_{r}}=\frac{d z}{B_{z}}$.
Fran above we then hare
$\frac{\partial \psi}{d r} d r+\frac{\partial \psi}{\partial z} d z=0$ so that ψ is constant along streamlines of \vec{B}. now use induction equation in steady state with no diffusivity:

$$
\nabla x(\vec{V} \times \vec{B})=0
$$

for (3は) (31)

$$
\begin{aligned}
\Rightarrow & \nabla \times\left(r \Omega \hat{e}_{\theta} \times\left(\nabla \times \frac{1}{r} \psi \hat{e}_{\theta}\right)\right) \\
& -\nabla \times\left(r \Omega \hat{e}_{\theta} \times \frac{\partial \psi}{\partial z} \hat{e}_{r}\right)+\nabla \times\left(r \Omega \hat{e}_{\theta} \times \frac{1}{r} \frac{\psi \psi}{\partial r} \hat{e}_{z}\right) \\
& +\nabla \times\left(\frac{x \Omega}{x} \frac{\partial \psi}{\partial t} \hat{e}_{z}\right)+\nabla \times\left(\frac{k \Omega}{r} \frac{\partial \psi}{\partial r} \hat{e}_{r}\right) \\
& {\left[\frac{\partial \tau}{\partial z}\left(\frac{\partial \psi \psi}{\partial r}\right)-\frac{\partial}{\partial r}\left(\Omega \frac{\partial \psi}{\partial z}\right)\right] \hat{\theta}=0 } \\
= & \frac{\partial \Omega}{\partial z} \frac{\partial \psi}{\partial r}-\frac{\partial \Omega}{\partial r} \frac{\partial \psi}{\partial z}=0 \Rightarrow \Omega=f(\psi)
\end{aligned}
$$

thus, $\Omega=f(\psi)$
and this means that the angular velocity is constantant along field lines, since ψ is a constant along field lines. If Ω were to vary along field lines -then poloidal lines wald be continually stretched to produce toroidal lines, and steady state is not possible without dissipation. When field limes are stretched work is done on them. If field is Strong, then field resists deformation and trees to impose rigid rotation.
Now this helps to explain why B-fields can transport $\&$ momentum. We will consider examples of axanetic breaking and gets

